Answer:
11, 760 Pa.
Explanation:
By applying formula P= pgh, where P is pressure, p is density, g is gravitational acceleration (9.8 m\s2) and h is height of water level. Putting values in the formula, you can have the correct answer.
It doesn't matter. If the slides are truly frictionless, then
your kinetic energy at the bottom will be equal to the
potential energy you had at the top, no matter what kind
of route you took getting down.
___________________________
The only way I can think of that it would make a difference
would be if the shallow slide were REALLY REALLY long,
and you didn't have anything to eat all the way down.
Then you might lose some weight while you're on the slide,
and your mass might be less at the bottom than it was at the
top. Then, in order to have the same kinetic energy at the
bottom, you'd need to be going a little bit faster.
But if it takes less than, say, two or three days, to go down the
long, shallow slide, then this effect would probably be too small
to make any difference.
Weight = mass * gravity
420 = mass * 9.8
mass of Betty = 42.857 kg
Difference in height = 1 - 0.45 = 0.55 meters
Total energy = Kinetic energy + potential energy
At the highest point, the kinetic energy is zero while the potential energy is maximum, therefore, we can get the total energy as follows:
Total energy = 0 + mgh
Total energy = 42.857*9.8*0.55 = 231 Joules
At the lowest point, the potential energy is zero while the kinetic energy is maximum. Therefore:
Total energy = 0.5 * m * (v)^2 + 0
231 = 0.5 * (42.857) * (velocity)^2
(velocity)^2 = 10.78
velocity = 3.28 meters/sec
What is the atomic number of an element whose atoms each 47 protons, 60 neutrons, and 47 electrons?
The correct answer is number 47 or Ag (Silver).
Hope I Helped!
Hey there! :D
Plug in what you know.
F=ma
F= force m= mass a= acceleration
200 N= m*8 ms
Divide both sides by 8.
m= 25
The mass is 25.
I hope this helps!
~kaikers