Answer:
chris gets 960 and molly gets 1440
Explanation:
add the ratio up and divide
2+3=5
2400/5=480
480x2=960
480x3=1440
960+1440= 2400
I don't think you mean 'criteria'. I think you mean three occurrences or
observations that indicate the presence of acceleration.
They are:
-- an object is speeding up
-- an object is slowing down
-- the direction of an object's motion is changing .
Any one of these changes is acceleration.
There's a single term that covers them all. It is "change in velocity".
Answer:
The horizontal distance covered by the firework will be
Explanation:
Let acceleration due to gravity on the planet be g, initial velocity of the firework be u and angle made with the horizontal be ∅.
writing equation of motion in vertical direction:
and
therefore
writing equation of motion in horizontal direction:
therefore the equation becomes
therefore horizontal distance traveled =
Explanation:
The solution is be found in the attachment.
Answer:
6.57 m/s
Explanation:
First use Hook's Law to determine the F the compressed spring acts on the mass. Hook's Law F=kx; F=force, k=stiffnes of spring (or spring constant), x=displacement
F=kx; F=180(.3) = 54 N
Next from Newton's second law find the acceleration of the mass.
Newton's .2nd law F=ma; a=F/m ; a=54/.75 = 72m/s²
Now use the kinematic equation for velocity (or speed)
v₂²= v₀² + 2a(x₂-x₀); v₂=final velocity; v₀=initial velocity; a=acceleration; x₂=final displacement; x₀=initial displacment.
v₀=0, since the mass is at rest before we release it
a=72 m/s² (from above)
x₀=0 as the start position already compressed
x₂=0.3m (this puts the spring back to it's natural length)
v₂²= 0 + 2(72)(0.3) = 43.2 m²/s²
v₂= = 6.57 m/s