In stars more massive than the sun, the core temperature is hotter, which allows for fusion of more complex elements.
Most of the fusion occurs in the core.
In stars more massive than the sun, fusion continues through Deuterium, Carbon, and finally reaching iron/nickel.
Up to this point, the fusion reaction was endothermic, which means that the energy expended to produce the fusion reaction was exceeded by the energy produced in the reaction.
Fusion past iron is exothermic, and therefore the star will be able to survive by fusing elements heavier than iron.
After the core is almost entirely iron, the star is no longer in the Main Sequence.
So, fusion in stars more massive than the sun continue fusing until the core is almost entirely <em>iron</em>.
The bicyclist accelerates with magnitude <em>a</em> such that
25.0 m = 1/2 <em>a</em> (4.90 s)²
Solve for <em>a</em> :
<em>a</em> = (25.0 m) / (1/2 (4.90 s)²) ≈ 2.08 m/s²
Then her final speed is <em>v</em> such that
<em>v</em> ² - 0² = 2<em>a</em> (25.0 m)
Solve for <em>v</em> :
<em>v</em> = √(2 (2.08 m/s²) / (25.0 m)) ≈ 10.2 m/s
Convert to mph. If you know that 1 m ≈ 3.28 ft, then
(10.2 m/s) • (3.28 ft/m) • (1/5280 mi/ft) • (3600 s/h) ≈ 22.8 mi/h
Answer:
θ = sin⁻¹
Explanation:
From one of the equations of motion, v² = u² + 2as.......... equation 1
Since the object thrown was moving against gravity, then the acceleration, a would change to -g and the initial velocity u would change to V₀ sin θ because the object is travelling at angle of θ to the horizontal. By inputting all these parameter into equation 1, we would arrive at:
v² = (u sin θ)² - 2gd
(u sin θ)² = 2gd
d = (u sin θ)²/2g
sin² θ = 2gd
sin θ = 
θ = sin⁻¹ 
Answer:
When you are running the most important force that you should understand is friction. Friction is a force that opposes movement between two objects, but for runners friction makes you faster. Friction gives you a better and more efficient way to use your energy into speed.
Answer:
Bouyancy
Explanation:
Bouyancy occurs when the upthrust exerted on an object is equal to the weight of object displaced. It is mostly applicable to low density objects for example balloon. When balloon is displaced in water, it floats. This is due to the effect of the upthrust acting on the balloon which allows the balloon to float and which is opposite the weight.
Note that the weight acts downwards the object while the upthrust always acts opposite (upward)