Answer:
a) yes, it was an hydrate
b) the number of waters of hydration, x = 6
Explanation:
a) yes it was an hydrate because the mass decreased after the process of dehydration which means removal of water thus some water molecules were present in the sample.
b) NiCl2. xH2O
mass if dehydrated NiCl2 = 2.3921 grams
mass of water in the hydrated sample = mass of hydrated - mass of dehydrated = 4.3872 - 2.3921 = 1.9951 g which represent the mass of water that was present in the hydrated sample.
NiCl2.xH2O
mole of dehydrated NiCl2 = m/Mm = 2.3921/129.5994 = 0.01846 mole
mole of water = m/Mm = 1.9951/18.02 = 0.11072 mole
Divide both by the smallest number of mole (which is for NiCl2) to find the coefficient of each
for NiCl2 = 0.01846/0.01846 = 1
for H2O = 0.11072/0.01846 = 5.9976 = 6
thus the hydrated sample was NiCl2. 6H2O
Answer:
ICMP Echo Request
Explanation:
ICMP Echo Request is a form of probe or message sent by a user to a destination system.
Explanation:
Sorry, I don't know, but I can tell you that when an atom, or a body, has the same amount of positive charges (protons) and negative charges (electrons), it is said to be electrically neutral. ... The net charge corresponds to the algebraic sum of all the charges that a body possesses.
The correct answer among the choices given is option B. Radioisotopes are isotopes that emit radiation because they have unstable nuclei. These are radioactive isotopes of an element. They are defined as atoms that contain an unstable combination of neutrons and protons.
Answer:
16mL
Explanation:
Using the following formula;
CaVa = CbVb
Where;
Where
Ca = concentration/molarity of acid (M)
Va = volume of acid (mL)
Cb = concentration/molarity of base (M)
Vb = volume of base (mL)
According to the information provided in this question;
Ca (HCl) = 2M
Cb (NaOH) = 5M
Va (HCl) = 40mL
Vb (NaOH) = ?
Using CaVa = CbVb
Vb = CaVa/Cb
Vb = 2 × 40/5
Vb = 80/5
Vb = 16mL