Answer:
Antoine Lavoisier and Johann Wolfang Döbereiner organized the elements based on properties such as how the elements reacts or whether they are solid or liquid.
Explanation:
The periodic table of the elements as we have it today was developed as a result of the work of several notable centuries who lived centuries apart, all of who made notable contributions to development of the modern periodic table in use today.
In 1789, Antoine Lavoisier, a French Chemist provided a definition of elemets which he defined as a substance whose smallest units cannot be broken down into a simpler substance. He further grouped the elements into two as metals and nonmetals.
In 1829, German physicist Johann Wolfang Döbereiner arranged elements in groups of three in increasing order of atomic weight and called them triads. His arrangement owasf elements into triads was based on his observation of similarities in physical and chemical properties of certain elements.
John Newlands, a British Chemist was the first to arrange the elements into a periodic table with increasing order of atomic masses.
In 1869, Russian chemist Dmitri Mendeleev developed a periodic table which provided a framework the modern periodic table. He arranged the elements according to their atomic weight, leaving gaps for elements that were yet to be discovered.
The modern periodic table arranges elements based on increasing atomic number.
To answer this problem, we must make assumptions for simplicity. The first assumption is that, the system only consist of these 3 gases. The second assumption is that, these gases behave ideally. Thus, from Dalton's Law of Partial Pressure, the total pressure is simply the sum of their individual partial pressures.
Total pressure = 2.5 + 0.8 + 3.4 = <em>6.7 atm</em>
Answer:
0.5 M
Explanation:
From the question given above, the following data were obtained:
Mass of NaOH = 80 g
Volume of solution = 4 L
Molarity =?
Next, we shall determine the number of mole in 80 g of NaOH. This can be obtained as follow:
Mass of NaOH = 80 g
Molar mass of NaOH = 23 + 16 + 1
= 40 g/mol
Mole of NaOH =?
Mole = mass / molar mass
Mole of NaOH = 80 / 40
Mole of NaOH = 2 moles
Finally, we shall determine the molarity of the solution. This can be obtained as follow:
Mole of NaOH = 2 moles
Volume of solution = 4 L
Molarity =?
Molarity = mole / Volume
Molarity = 2/4
Molarity = 0.5 M
Therefore, the molarity of the solution is 0.5 M.
Sulfur Trioxide is the correct name for SO3