Answer:
Let I and j be the unit vector along x and y axis respectively.
Electric field at origin is given by
E= kq1/r1^2 i + kq2/r2^2j
= 9*10^9*1.6*10^-19*/10^-6*(2i+ j)
= (2.88i + 1.44j)*10^-3 N/C
Force on charge= qE= 3*10^-19*1.6*(2.88i +1. 44 j) *10^-3
F= (1.382 i + 0.691 j) *10^-21
Goodluck
Explanation:
Well, a curler uses heat to calm down friction so I am not sure
Answer:
They move farther apart
Explanation:
When objects heat up they expand for example heating up a balloon makes it expand
Answer:
The electric potential will be "259.695 volt".
Explanation:
In the given question, the figure is not provided. Below is the attached figure given.
Given:





Now,
At point P, the electric potential will be:
⇒ 
By putting values, we get
⇒ ![=9\times 10^9 [\frac{6.39\times 10^{-9}}{0.40} +\frac{3.22\times 10^{-9}}{0.25} ]](https://tex.z-dn.net/?f=%3D9%5Ctimes%2010%5E9%20%5B%5Cfrac%7B6.39%5Ctimes%2010%5E%7B-9%7D%7D%7B0.40%7D%20%2B%5Cfrac%7B3.22%5Ctimes%2010%5E%7B-9%7D%7D%7B0.25%7D%20%5D)
⇒ 