Each energy sublevel corresponds to an orbital of a different shape.
Explanation:
Two sublevels of the same principal energy level differs from each other if the sublevels corrresponds to an orbital of a different shape.
- The principal quantum number of an atom represents the main energy level in which the orbital is located or the distance of an orbital from the nucleus. It takes values of n = 1,2,3,4 et.c
- The secondary quantum number gives the shape of the orbitals in subshells accommodating electrons.
- The number of possible shapes is limited by the principal quantum numbers.
Take for example, Carbon:
1s² 2s² 2p²
The second energy level is 2 but with two different sublevels of s and p. They have different shapes. S is spherical and P is dumb-bell shaped .
Learn more:
Quantum number brainly.com/question/9288609
#learnwithBrainly
Answer:
1200 meters
Explanation:
there are 60 seconds in a minute times 2 is 120 ten times 120 is 1200
Answer: O horizon
Horizons refers to the distinct layers of soil lying parallel to the earth surface. Horizons develop as a result of soil formation. Soil forms as a result of weathering or rocks and addition of organic matter from the decomposition of plant and animal waste. Each horizon differs from the others on the basis of color, texture, type of particles present in the soil, type of minerals present and amount of organic matter present in the soil.
O horizon is the soil horizon that is located closest to the earth's crust. This horizon consist of undecayed or partially decayed animal and plant waste like shedded leaves, bark, animal skin and feces. As, the matter remains undecomposed, therefore, this horizon consists of low amount of organic matter and it is less fertile for plant growth.
I agree the best choice is A............
Answer:

Explanation:
A differential equation that contain a term with di(t)/dt is in a RL circuit. Here we have

where vr is the voltage in the resistance, vi is the voltage in the inductance and vb is the source voltage. But also we have that

where L is the inductance of the circuit, r is the resistance an i is the current. By replacing we have the differential equation

I hope this is useful for you
regards