Answer:
1 Frequency
2 Wavelength
3 Amplitude
4 Crest
Hope it helps pls mark brainliest
Answer: Vb is the vector (-5.37m/s, 8.59 m/s), with a module 10.13m/s
then the ratio Vb/Vr = 10.13m/s/5.37m/s = 1.9
Explanation:
We can use the notation (x, y) where the river flows in the x-axis and the pier is on the y-axis.
We have Vr = (5.37m/s, 0m/s)
Now, if the boat wants to move only along the y-axis (perpendicularly to the shore).
The velocity of the boat Vb will be:
Vb = (-c*sin(32). c*cos(32))
Then we should have that:
5.37 m/s - c*sin(32) = 0
c = (5.37/sin(32))m/s = 10.13 m/s
the velocity in the y-axis is:
10.13m/s*cos(32) = 8.59 m/s
So Vb = (-5.37m/s, 8.59 m/s)
the ratio Vb/Vr = 10.13m/s/5.37m/s = 1.9 where i used Vb as the module of the boat's velocity.
In the outer layers of earths atmosphere gases are in ionized state primarily on account of cosmic rays . as earth rotates , strong electric current are set up due to movement of ions . these currents form earth magnetic field . and thus two equal and opposite poles of earth formed
Answer:
Twice as fast
Explanation:
Solution:-
- The mass of less massive cart = m
- The mass of Massive cart = 2m
- The velocity of less massive cart = u
- The velocity of massive cart = v
- We will consider the system of two carts to be isolated and there is no external applied force on the system. This conditions validates the conservation of linear momentum to be applied on the isolated system.
- Each cart with its respective velocity are directed at each other. And meet up with head on collision and comes to rest immediately after the collision.
- The conservation of linear momentum states that the momentum of the system before ( P_i ) and after the collision ( P_f ) remains the same.

- Since the carts comes to a stop after collision then the linear momentum after the collision ( P_f = 0 ). Therefore, we have:

- The linear momentum of a particle ( cart ) is the product of its mass and velocity as follows:
m*u - 2*m*v = 0
Where,
( u ) and ( v ) are opposing velocity vectors in 1-dimension.
- Evaluate the velcoity ( u ) of the less massive cart in terms of the speed ( v ) of more massive cart as follows:
m*u = 2*m*v
u = 2*v
Answer: The velocity of less massive cart must be twice the speed of more massive cart for the system conditions to hold true i.e ( they both come to a stop after collision ).
v2 = ?
m1 = 10kg
m2 = 70kg
v1 = 4m/s
E1 = E2
E1 = 1/2 * m1 * v1^2 = 1/2 * 10kg * 4m/s^2 = 80J
E2 = 1/2 * m2 * v2^2 = 80 J
v2 = √(E2/(2 * m2)) = √(80J/(2 * 70kg)) = about 0.76m/s