1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
3 years ago
9

charlene has eight more dollars than Megan. Together they have $86.00. Which equiation can be used to determine the amount of mo

ney, m, Megan has?
Mathematics
1 answer:
Paul [167]3 years ago
8 0

Answer:

Megan has 35.00 dollars.

Step-by-step explanation:

Divide 86.00 by 2 which equals 43.00.  Next, minus 8 from the 43.00 and you will get what Megan has.  Megan has 35.00 dollars.

I hope this helps!

You might be interested in
I really need help!!!!
vivado [14]
In this situation, choose length and width such that 12.75=l*w. writing it as a mixed number you have 51/4=sqrt51/2*sqrt51/2 or any other combination you can use.
8 0
3 years ago
A ride-share company has a fee that includes a fixed cost and a cost that depends on both the time spent travelling, in minutes,
zlopas [31]

Answer:

the cost of Roy's ride is $23.05

Step-by-step explanation:

According to the Question,

Let, Cost of per minute charge is 'x' & Cost Of Per Kilometre charge is y .

  • Given, A ride-share company has a fee of the fixed cost of a ride is $2.55 .
  • And, The Total cost of the Ride depends on both the time spent on travelling(in minutes), and the distance travelled(in kilometres) .

⇒ Judy's ride costs $16.75 . but the actual cost after deducting the fixed charge is 16.75-2.55 = $14.20, took 8 minutes & The distance travelled was 10 km. Thus, the equation for the journey is 8x+10y=14.20 ⇒ Equ. 1

⇒ Pat's ride costs $30.35 . but the actual cost after deducting the fixed charge is 30.35-2.55 = $27.80, took 20 minutes & The distance travelled was 18 km. Thus, the equation for the journey is 20x+18y=27.80 ⇒ Equ. 2

Now, on Solving Equation 1 & 2, We get

x=0.4(Cost of per minute charge) & y=1.1(Cost Of Per Kilometre charge)

Now, Roy's ride took 10 minutes & The distance travelled was 15 km . Thus, the cost of Roy's Ride is 10x+15y ⇔ 10×0.4 + 15×1.1 ⇔ $20.5

Hence, the total cost of Roy's ride is 20.5 + 2.55(fixed cost) = $23.05

8 0
3 years ago
Graph the image of this figure after a dilation with a scale factor of 1/3 centered at the origin.
posledela

Answer:

see attached diagram

Step-by-step explanation:

A dilation with a scale factor of \dfrac{1}{3} centered at the origin has a rule:

(x,y)\mapsto\left(\dfrac{x}{3},\dfrac{y}{3}\right).

Then the image of the triangle ABC is triangle DEF(see attached diagram) with coordinates

  • D\left(\dfrac{-3}{3},\dfrac{3}{3}\right)\Rightarrow D(-1,1);
  • E\left(\dfrac{3}{3},\dfrac{9}{3}\right)\Rightarrow E(1,3);
  • F\left(\dfrac{6}{3},\dfrac{6}{3}\right)\Rightarrow F(2,2).

3 0
3 years ago
Sean has a collection of coins. One tenth of the coins are from Europe. Thirty-two hundredth are from Asia. The rest are from Af
Tema [17]
Lets write each part, the total will be x:
(1/10)x = Europe
3200 = Asia
x - <span>(1/10)x - 3200 = Africa

Europe + Asia = </span><span>(1/10)x + 3200 = x/10 + 3200
= (320x + 1)/3200
that would be expressed as a fraction, and depends on the total of coins, x</span>
7 0
3 years ago
Read 2 more answers
How to differentiate y=x^n using the first principle. In this question, I cannot use the rule of differentiation. I have to do t
Zarrin [17]

By first principles, the derivative is

\displaystyle\lim_{h\to0}\frac{(x+h)^n-x^n}h

Use the binomial theorem to expand the numerator:

(x+h)^n=\displaystyle\sum_{i=0}^n\binom nix^{n-i}h^i=\binom n0x^n+\binom n1x^{n-1}h+\cdots+\binom nnh^n

(x+h)^n=x^n+nx^{n-1}h+\dfrac{n(n-1)}2x^{n-2}h^2+\cdots+nxh^{n-1}+h^n

where

\dbinom nk=\dfrac{n!}{k!(n-k)!}

The first term is eliminated, and the limit is

\displaystyle\lim_{h\to0}\frac{nx^{n-1}h+\dfrac{n(n-1)}2x^{n-2}h^2+\cdots+nxh^{n-1}+h^n}h

A power of h in every term of the numerator cancels with h in the denominator:

\displaystyle\lim_{h\to0}\left(nx^{n-1}+\dfrac{n(n-1)}2x^{n-2}h+\cdots+nxh^{n-2}+h^{n-1}\right)

Finally, each term containing h approaches 0 as h\to0, and the derivative is

y=x^n\implies y'=nx^{n-1}

4 0
3 years ago
Other questions:
  • What is 75578 plus 565
    15·2 answers
  • Write the quadratic equation in factored form. Be sure to write the entire equation.
    11·1 answer
  • Manav is painting a rectangular room and the dimensions of this room are given by x,y and z feet. Manav takes 8 hours to paint a
    6·1 answer
  • Allen rents a truck for 45 dollars plus .36 cents for every mile that he drives the truck. Write an equation that models this li
    15·1 answer
  • What characteristic below distinguishes a quantitative research question from a research hypothesis? Group of answer choices One
    5·2 answers
  • ___sides of equal length
    7·1 answer
  • What is the answer please help me no<br> Links
    6·1 answer
  • Determine the equation of the circle graphed below.
    10·1 answer
  • The area of a rectangle is 2x^2-11x+15 square feet. The length of the rectangle
    8·1 answer
  • Please help fast<br>it's for a quiz​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!