It would be in the transition metals
Solid- molecules vibrate in place and tightly packed
liquid-molecules fur shape of container and can slide past each other
gas-molecules also fit shape of container and have the most room
Answer:
The mass percent of potassium is 39%
Option C is correct
Explanation:
Step 1: Data given
Atomic mass of K = 39.10 g/mol
Atomic mass of H = 1.01 g/mol
Atomic mass of C = 12.01 g/mol
Atomic mass of O = 16.0 g/mol
Step 2: Calculate molar mass of KHCO3
Molar mass KHCO3 = 39.10 + 12.01 + 1.01 + 3*16.0
Molar mass KHCO3 = 100.12 g/mol
Step 3: Calculate mass percent of potassium (K)
%K = (atomic mass of K / molar mass of KHCO3) * 100%
%K = (39.10 / 100.12) * 100%
%K = 39.05 %
The mass percent of potassium is 39%
Option C is correct
First write the molecular equation with states:
(NH4)2S (aq) + 2AgNO3(aq) → Ag2S (s) + 2NH4NO3
Now write a full ionic equation by separating into ions all substances that dissociate: anything (s) (g) or (l) does not dissociate
2NH4 + (aq) + S 2-(aq) + 2Ag+ (aq) + 2NO3- (aq) → Ag2S(s) + 2NH4 + (aq) + 2NO3- (aq)
To write the NET IONIC equation, inspect the full ionic equation above and delete anything that appears on both sides of the → sign:
Net ionic equation:
S 2-(aq) + 2Ag + (aq) → Ag2S(s)