Answer:
Maybe they both have valence electrons and can be used in chemical reactions. I could be wrong, I don't have any exact answers.
Explanation:
The balanced equation for the above neutralisation reaction is as follows;
Ca(OH)₂ + 2HCl ----> CaCl₂ + 2H₂O
Stoichiometry of Ca(OH)₂ to HCl is 1:2
number of Ca(OH)₂ moles reacted - 0.250 mol/L x 20.0 x 10⁻³ L = 5.00 x 10⁻³ mol
according to molar ratio of 1:2
number of HCl moles required = 2 x number of Ca(OH)₂ moles reacted
number of HCl moles = 5.00 x 10⁻³ x 2 = 10.0 x 10⁻³ mol
molarity of HCl solution - 0.250 M
there are 0.250 mol in volume of 1 L
therefore 10.0 x 10⁻³ mol in - 10.0 x 10⁻³ mol / 0.250 mol/L = 40.0 mL
40.0 mL of 0.250 M HCl is required
1. D)
2. I think the correct answer from the choices listed above is option C. The tools that <span>should
be used to record the most complete data about a gas are a manometer
and a thermometer. Pressure and temperature are important measurements
for a gas since from these data we can calculate any other properties of
the gas.</span>
Answer:
Br- Withdraws electrons inductively
Donates electrons by resonance
CH2CH3 - Donates electrons by hyperconjugation
NHCH3- Withdraws electrons inductively
Donates electrons by resonance
OCH3 - Withdraws electrons inductively
Donates electrons by resonance
+N(CH3)3 - Withdraws electrons inductively
Explanation:
A chemical moiety may withdraw or donate electrons by resonance or inductive effect.
Halogens are electronegative elements hence they withdraw electrons by inductive effect. However, they also contain lone pairs so the can donate electrons by resonance.
Alkyl groups donate electrons by hyperconjugation involving hydrogen atoms.
-NHCH3 and contain species that have lone pair of electrons which can be donated by resonance. Also, the nitrogen and oxygen atoms are very electron withdrawing making the carbon atom to have a -I inductive effect.
+N(CH3)3 have no lone pair and is strongly electron withdrawing by inductive effects.