Answer:
vertical force cannot change the velocity on the x-axis. t =x/v₀ₓ
Explanation:
The force is a vector magnitude, so the forces on the x-axis affect the acceleration on this axis. Consequently a vertical force cannot change the velocity on the x-axis.
= m g
Fₓ = 0
The horizontal velocity in projectile motion is constant, if we neglect the air resistance, so it can be used to find the time of a horizontal displacement
x = v₀ₓ t
t =x/v₀ₓ
The only magnitude that is the same for both movements is the time that is a scalar
Answer:
1371.4watt
Explanation:
from power=energy/time
BUT energy=force times distance
Given:
m(mass of the box)=10 Kg
t(time of impact)=4 sec
u(initial velocity)=0.(as the body is initially at rest).
v(final velocity)=25m/s
Now we know that
v=u+at
Where v is the final velocity
u is the initial velocity
a is the acceleration acting on the body
t is the time of impact
Substituting these values we get
25=0+a x 4
4a=25
a=6.25m/s^2
Now we also know that
F=mxa
F=10 x6.25
F=62.5N
Answer:
(a) 0.177 m
(b) 16.491 s
(c) 25 cycles
Explanation:
(a)
Distance between the maximum and the minimum of the wave = 2A ............ Equation 1
Where A = amplitude of the wave.
Given: A = 0.0885 m,
Distance between the maximum and the minimum of the wave = (2×0.0885) m
Distance between the maximum and the minimum of the wave = 0.177 m.
(b)
T = 1/f ...................... Equation 2.
Where T = period, f = frequency.
Given: f = 4.31 Hz
T = 1/4.31
T = 0.23 s.
If 1 cycle pass through the stationary observer for 0.23 s.
Then, 71.7 cycles will pass through the stationary observer for (0.23×71.7) s.
= 16.491 s.
(c)
If 1.21 m contains 1 cycle,
Then, 30.7 m will contain (30.7×1)/1.21
= 25.37 cycles
Approximately 25 cycles.
Answer:
The answer is 576.0473
Explanation:
Hope this helps.
Please mark my answer as brainliest?