Answer:
<em>l = w + 3cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm </em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 </em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:l = (13cm) + 3cm = 16cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:l = (13cm) + 3cm = 16cmStep-by-step explanation:</em>
I hope this helps you.
Answer:
8,13
Step-by-step explanation:
The pattern in +5 so 3+5=8, and 8+5=13
Here's a formula to slove ur problem
√(x₁-x₂) +(y₁-y₂)
=√(38-14) +(30-20)
=√24+10
=√34
(6,1)&(5,4)
(7,-3)&(4,-8)
(-8,0)&(1,5)
Basically, you are to find the line that passes through 2 points.
Equation: y2-y1=m(x2-x1)
• x1: 6, x2: 5, y1: 1, y2: 4
(4-1)/(5-6)=m
m=3/-1
m=-3
Hence, m= -3x10^0
• x1: 7, x2: 4, y1: -3, y2: -8
(-8--3)/(4-7)=m
m=(-8+3)/-3
m=-5/-3
m=5/3
m=1.66666667
Hence, m=1.6667x10^0
• x1: -8, x2: 1, y1: 0, y2: 5
(5-0)/(1--8)=m
m=5/(1+8)
m=5/9
m=0.55555556
Hence, m=5.56x10^-1
Hope this helps!