Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be 
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so,
>
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
<span>Greek philosophers had a basic approach to studying the world. They like to question the world and incite debates but they never really bothered to gather any real information, just discussions. Due to this, many ideas about matters were put out to be discussed, but they were never resolved.</span>
27.5 because of you divide the 55miles with the time you get your velocity which is the speed.
Answer:
Total number of lamps will be 4
Explanation:
We have given power of the lamp W = 400 watt
Potential difference across the lamp V=110 volt
We know that power is equal to 
So 

Total current is given 15 A
As it is given that lamps are connected in parallel so total current is the sum of current through each lamp
So number of lamp will be 
As the lamp can not be in negative
So total number of lamps will be 4