Grinding pepper is a physical change
Answer:
<u>The asteroid was not detected until it was extremely close to Earth. </u>
Explanation:
According to data from NASA, the Asteroid named 'Astriod 2019 OK', was detected when it was extremely close to earth with just about an estimated distance of 73,000 kilometers (45,000 miles) from the Earth.
Scientists were concerned at the proximity of this space object to the Earth before it was discovered, and it brought about a cause of concern that since it was not extremely large (estimated 57 to 130 meters wide) it creates a potential for other smaller asteroids to escape detection and struck the earth.
C. 5
a neutral atom has no electrical charge. protons are positive and electrons are negative, they need to be the same to make it a neutral atom.
Answer:
0.74 N/cm
Explanation:
The following data were obtained from the question:
Mass (m) = 3 Kg
Extention (e) = 40 cm
Spring constant (K) =?
Next, we shall determine the force exerted on the spring.
This can be obtained as follow:
Mass (m) = 3 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Force (F) =?
F = mg
F = 3 × 9.8
F = 29.4 N
Finally, we shall determine the spring constant of the spring. This can be obtained as follow:
Extention (e) = 40 cm
Force (F) = 29.4 N
Spring constant (K) =?
F = Ke
29.4 = K × 40
Divide both side by 40
K = 29.4 / 40
K = 0.74 N/cm
Therefore, the spring constant of the spring is 0.74 N/cm
Answer:
at t=46/22, x=24 699/1210 ≈ 24.56m
Explanation:
The general equation for location is:
x(t) = x₀ + v₀·t + 1/2 a·t²
Where:
x(t) is the location at time t. Let's say this is the height above the base of the cliff.
x₀ is the starting position. At the base of the cliff we'll take x₀=0 and at the top x₀=46.0
v₀ is the initial velocity. For the ball it is 0, for the stone it is 22.0.
a is the standard gravity. In this example it is pointed downwards at -9.8 m/s².
Now that we have this formula, we have to write it two times, once for the ball and once for the stone, and then figure out for which t they are equal, which is the point of collision.
Ball: x(t) = 46.0 + 0 - 1/2*9.8 t²
Stone: x(t) = 0 + 22·t - 1/2*9.8 t²
Since both objects are subject to the same gravity, the 1/2 a·t² term cancels out on both side, and what we're left with is actually quite a simple equation:
46 = 22·t
so t = 46/22 ≈ 2.09
Put this t back into either original (i.e., with the quadratic term) equation and get:
x(46/22) = 46 - 1/2 * 9.806 * (46/22)² ≈ 24.56 m