Answer:
Mass = 11.78 g of P₄
Explanation:
The balance chemical equation is as follow:
6 Sr + P4 → 2 Sr₃P₂
Step 1: Calculate moles of Sr as;
Moles = Mass / M/Mass
Moles = 50.0 g / 87.62 g/mol
Moles = 0.570 moles
Step 2: Find moles of P₄ as;
According to equation,
6 moles of Sr reacted with = 1 mole of P₄
So,
0.570 moles of Sr will react with = X moles of P₄
Solving for X,
X = 1 mol × 0.570 mol / 6 mol
X = 0.0952 mol of P₄
Step 3: Calculate mass of P₄ as,
Mass = Moles × M.Mass
Mass = 0.0952 mol × 123.89 g/mol
Mass = 11.78 g of P₄
Answer:
Positive: a and b
Negative: c
Explanation:
The entropy (S) is the measure of the randomness of the system, and it intends to increase. The randomness can be determined by the energy of the molecules, their velocity and how distance they are between the other molecules.
When the entropy increases, ΔS is positive, when the entropy decreases, ΔS is negative. So, when gasoline mix with air in a car engine, the process intends to continue, the randomness increases and ΔS is positive. When hot air expands, the distance between the molecules increases, so ΔS is positive.
But, when humidity condenses, the molecules stay closer, so there's a decrease in the randomness, then ΔS is negative.
Answer:
1.403x10²⁴ molecules
Explanation:
In order to calculate how many molecules of CO₂ are there in 102.5 g of the compound, we first<u> convert grams to moles</u> using its <em>molar mass</em>:
- 102.5 g ÷ 44 g/mol = 2.330 mol CO₂
Now we <u>convert moles into molecules </u>using <em>Avogadro's number</em>:
- 2.330 mol * 6.023x10²³ molecules/mol = 1.403x10²⁴ molecules
The conclusion includes a summary of the results, whether or not the hypothesis was supported, the significance of the study, and future research.
Answer: D!! ( difference in the potential energy of the reactants and products )
Explanation:
i have the same test