Answer:
Oxygen exists as a diatomic molecule in nature when it is not combined with any other element. It forms O2 molecule because it is stable when it is uncombined. It has the lowest energy level when uncombined. ... By achieving octet configuration, the diatomic elements become more stable compared to the single atom.
Explanation:
plsssss.... Mark me as the brainliest
Answer: Potential energy is converted to kinetic energy and back again.
Explanation:At points 1 and 3, the pendulum stops moving, and its mechanical energy is purely potential. At point 2, the pendulum is moving the fastest, and its mechanical energy is purely kinetic. Therefore, as the pendulum moves from point 1 to point 3, its potential energy is first converted to kinetic energy, then back to potential.
Answer: G Atom 1 and Atom 4.. hope this helps and good luck!
Mass is the property of a physical body and the resistance to acceleration when a net force is applied on the body.
The atomic mass of sodium (Na) is = 22.98
The atomic mass of nitrate (N) is = 14.00
The atomic mass of oxygen (O) is = 15.99
The sodium nitrate (NaNO3) consists of the atomic masses of Na+N+(O)3 = 85 grams
Therefore, the mass of 6.5 mol of sodium nitrate is = 6.5 * 1 mol of NaNO3
= 6.5 * (85)
= 552.50 grams
Answer:
Transition Element
Explanation:
Transition elements are defined as those elements which can form at least one stable ion and has partially filled d-orbitals. They are also characterized by forming complex compounds and having different oxidation states for a single metal element.
Transition metals are present between the metals and the non metals in the periodic table occupying groups from 3 to 12. There general electronic configuration is as follow,
(n-1)d
¹⁻¹⁰ns
¹⁻²
The general configuration shows that for a given metal, the d sublevel will be in lower energy level as compared to corresponding s sublevel. For example,
Scandium is present in fourth period hence, its s sublevel is present in 4rth energy level so its d sublevel will be present in 3rd energy level respectively.
Hence, we can conclude that for transition metals the electron are present in highest occupied s sublevel and a nearby d sublevel
.