Answer:
Explanation:
In a chemical equation, the reactants are written on the left, and the products are written on the right. Chemical equations should contain information about the state properties of products and reactants, whether aqueous (dissolved in water — aq), solid (s), liquid (l), or gas (g). hope that helped
Answer:
58.94 mL
Explanation:
V1 = 48.3 mL V2 = v mL
T1 = 22 degree celsius OR 295 k T2 = 87 degree celsius OR 360 k
We will use the gas equation:
PV = nRT
Since the Pressure (p) , number of moles (n) and the universal gas constant(R) are all constants in this given scenario,
we can say that
V / T = k , (where k is a constant)
Since this is the first case,
V1 / T1 = k --------------------(1)
For case 2:
Since we have the same constants, the equation will be the same
V / T = k (where k is the same constant from before)
V2 / T2 = k (Since this is the second case) ------------------(2)
From (1) and (2):
V1 / T1 = V2 / T2
Now, replacing the variables with the given values
48.3 / 295 = v / 360
v = 48.3*360 / 295
v = 58.94 mL
Therefore, the final volume of the gas is 58.94 mL
Answer:
smelling it without glasses or putting your face/nose really close to the substance
Explanation:
I believe your answer should be C because the heat would move from the soup to the spoon.
Answer:
The correct option is;
D)
Explanation:
The given reaction is presented as follows;
NH₄Cl (s) → NH₃ (g) + HCl (g) ΔH° = 176 kJ/mol, ΔS° = 0.285 kJ/(mol·K)
We note that the Gibbs free energy, ΔG° is represented by the following equation;
ΔG° = ΔH° - T·ΔS°
Where:
T = Temperature (Kelvin)
The reaction will be spontaneous for exergonic reactions, ΔG° < 0 and it will not be spontaneous for endergonic reaction, ΔG° > 0
At room temperature, T = 25 + 273.15 = 298.15 K
Which gives;
ΔG° = 176 - 298.15 × 0.285 = 91.03 kJ/mol which is > 0 Not spontaneous reaction
At 800°C, we have;
T = 273.15 + 800°C + 1073.15 K
ΔG° = 176 - 1073.15 * 0.285 = -129.85 kJ/mol which is < 0 the reaction will be spontaneous
The correct option is therefore, that at room temperature, the reaction is not spontaneous. However, at high temperatures. like 800 °C, the free energy value turns negative and this reaction becomes spontaneous.