<span>In the formation of a solution,
energy is required to overcome the forces of attraction between the solvent
particles. The first step is for the solvent particles to move in order for
solute particles to enter the system. This process is endothermic where energy
flows into the system. The second step is when solute particles must separate
from other solute particles. Lastly, the solute should move between solvent
particles.</span>
The reaction of iron (III) oxide and aluminum is initiated by heat released from a small amount "starter mixture". This reaction is an oxidation-reduction reaction, a single replacement reaction, producing great quantities of heat (flame and sparks) and a stream of molten iron and aluminum oxide which pours out of a hole in the bottom of the pot into sand.
The balanced chemical equation for this reaction is:
2 Al(s) + Fe2O3(s) --> 2Fe(s) + Al2O3(s) + 850 kJ/mol
Curriculum Notes
This chemical reaction can be used to demonstrate an exothermic reaction, a single replacement or oxidation-reduction reaction, and the connection between ∆H calculated for this reaction using heats of formation and Hess' Law and calculating ∆H for this reaction using qrxn = mc∆T and the moles of limiting reactant. This reaction also illustrates the role of activation energy in a chemical reaction. The thermite mixture must be raised to a high temperature before it will react.
To determine how much thermal energy is released in this reaction, heats of formation values and Hess' Law can be used.
By definition, the deltaHfo of an element in its standard state is zero.
2 Al(s) + Fe2O3(s) --> 2Fe (s) + Al2O3 (s)
The deltaH for this reaction is the sum of the deltaHfo's of the products - the sum of the deltaHfo's of the reactants (multiplying each by their stoichiometric coefficient in the balanced reaction equation), i.e.:
deltaHorxn = (1 mol)(deltaHfoAl2O3) + (2 mol)(deltaHfoFe) - (1 mol)(deltaHfoFe2O3) - (2 mol)(deltaHfoAl)
deltaHorxn = (1 mol)(-1,669.8 kJ/mol) + (2 mol)(0) - (1 mol)(-822.2 kJ/mol) - (2mol)(0 kJ/mol)
deltaHorxn = -847.6 kJ
The melting point of iron is 1530°C (or 2790°F).
MARK ME BRAINLIEST
There are six protons and eight neutrons present in the carbon atom as shown.
<h3>What is the nucleus?</h3>
The nucleus of an atom consists of its protons and its neutrons. The protons are positively charged while the neutrons have no charge.
From the symbol of the element as shown in the question, we can see that there are six protons and eight neutrons present.
Learn more about nucleus of atoms:brainly.com/question/10658589
#SPJ1
12 % salt is present in 125 g mixture of salt and sand.
Keep in mind that the total percentage is always 100 %
Therefore, if 12 % is the salt, remaining 88 % must be
sand.
a. The amount of mixture is 125 q. Here, 12 % of 125 is
12 * 125 / 100 = 15 g of salt is present in 125 g mixture.
b. The amount of sand can be calculated similarly, 88 %
of 125 g is 88 * 125 / 100 = 110 g of sand is present in
125 g mixture.
The nuclear reactions which are under experimenter's control are said to be controlled nuclear reactions. In this, you can maintain the speed of the incident particle. α and β-decay process are examples of non-controlled nuclear reactions.