Answer:
( °F − 32) × 5/9 = °C
Explanation:
Also there is a mental calculation to convert from Fahrenheit to Celsius. The ratio 5/9 is approximately equal 0.55555….
Subtract 32º to adapt the equivalent in the Fahrenheit scale.
Divide the degrees Celsius by 2 (multiply by 0.5).
Take 1/10 of this number (0.5 * 1/10 = 0.05) and add it to the number obtained previously.
Example: Convert 98.6º F to Centigrade.
98.6 - 32 = 66.6
66.6 * 1/2 = 33.3
33.3 * 1/10 = 3.3
33.3 + 3.3 = 36.6 which is an approximation in degrees Centigrade
Answer:
The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.
Explanation:
- To solve this problem, we use Clausius Clapeyron equation: ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂).
- The first case: P₁ = 1 atm = 760 torr and T₁ = 451.0 K.
- The second case: P₂ = <em>??? needed to be calculated</em> and T₂ = 61.5 °C = 334.5 K.
- ΔHvap = 48.8 KJ/mole = 48.8 x 10³ J/mole and R = 8.314 J/mole.K.
- Now, ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂)
- ln(760 torr /P₂) = (48.8 x 10³ J/mole / 8.314 J/mole.K) (1/451 K - 1/334.5 K)
- ln(760 torr /P₂) = (5869.62) (-7.722 x 10⁻⁴) = -4.53.
- (760 torr /P₂) = 0.01075
- Then, P₂ = (760 torr) / (0.01075) = 70691.73 torr.
So, The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.