Answer:
41.17g
Explanation:
We are given the following parameters for Flourine gas(F2).
Volume = 5.00L
Pressure = 4.00× 10³mmHG
Temperature =23°c
The formula we would be applying is Ideal gas law
PV = nRT
Step 1
We find the number of moles of Flourine gas present.
T = 23°C
Converting to Kelvin
= °C + 273k
= 23°C + 273k
= 296k
V = Volume = 5.00L
R = 0.08206L.atm/mol.K
P = Pressure (in atm)
In the question, the pressure is given as 4.00 × 10³mmHg
Converting to atm(atmosphere)
1 mmHg = 0.00131579atm
4.00 × 10³ =
Cross Multiply
4.00 × 10³ × 0.00131579atm
= 5.263159 atm
The formula for number of moles =
n = PV/RT
n = 5.263159 atm × 5.00L/0.08206L.atm/mol.K × 296K
n = 1.0834112811moles
Step 2
We calculate the mass of Flourine gas
The molar mass of Flourine gas =
F2 = 19 × 2
= 38 g/mol
Mass of Flourine gas = Molar mass of Flourine gas × No of moles
Mass = 38g/mol × 1.0834112811moles
41.169628682grams
Approximately = 41.17 grams.
Boiling liquids that want to escape gas
The Plum Pudding Model is a model of atomic structure proposed by J.J. Thomson in the late 19th century. Thomson had discovered that atoms are composite objects, made of pieces with positive and negative charge, and that the negatively charged electrons within the atom were very small compared to the entire atom.
Answer:
<h2>9000 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 900 × 10
We have the final answer as
<h3>9000 N</h3>
Hope this helps you
Explanation:
The species or elements which gain electrons and reduces itself are known as oxidizing agent or oxidant.
Ability of an element to act as an oxidizing agent depends on its electrode potential.
The electrode potential of
is 0.52 V.
The electrode potential of
is -0.41 V.
The electrode potential of
is -2.38 V.
Greater is the value of electrode potential, stronger will be the oxidizing agent.
Therefore, rank of these species by their ability to act as an oxidizing agent are as follows.
>
> 