Answer:
<em>a= In scientific notation</em>
6.96×10⁵ Km
<em>b =In expanded notation</em>
0.00019 mm
Explanation:
Given data:
Radius of sun = 696000 Km
size of bacterial cell = 1.9 ×10⁻⁴ mm
Radius of sun in scientific notation = ?
Size of bacterial cell in expanded notation = ?
Solution:
Radius of sun:
696000 Km
<em>In scientific notation</em>
6.96×10⁵ Km
Size of bacterial cell:
1.9 ×10⁻⁴ mm
<em>In expanded notation</em>
1.9/ 10000 = 0.00019 mm
Molality of the solution is defined as the number of moles of a substance dissolved divided by the mass of the solvent:
Molality = number of moles / solvent mass
From the concentration of 39% (by mass) of HCl in water, we construct the following reasoning:
in 100 g solution we have 39 g hydrochloric acid (HCl)
number of moles = mass / molecular weight
number of moles of HCl = 39 / 36.5 = 1.07 moles
solvent (water) mass = solution mass - hydrochloric acid mass
solvent (water) mass = 100 - 39 = 61 g
Now we can determine the molality:
molality = 1.07 moles / 61 g = 0.018
The process by which green plants and some other organisms use sunlight to synthesize foods from carbon dioxide and water.
Answer:
The concentration of the solution will be much lower than 6M
Explanation:
To prepare a solution of a solid, the appropriate mass is taken and accurately weighed in a weighing balance and then made up to mark with distilled water.
From
n= CV
n = number of moles m/M( m= mass of solid, M= molar mass of compound)
C= concentration of substance
V= volume of solution
m=120g
M= 40gmol-1
V=500ml
120/40= C×500/1000
C= 120/40× 1000/500
C=6M
This solution will not be exactly 6M if the student follows the procedure outlined in the question. The actual concentration will be much less than 6M.
This is because, solutions are prepared in a standard volumetric flask. Using a 1000ml beaker, the student must have added more water than the required 500ml thereby making the actual concentration of the solution less than the expected 6M.