Answer:
ΔL = L0 C ΔT
We need to find C the constant of expansivity
C = ΔL / (L0 ΔT)
C = .96 / (15.04 * 65) = 9.82 * 10^-4 / deg C
<h2>
Answer: an underground lake</h2>
Explanation:
In general, sound (mechanical waves) travels faster in solids than in liquids, and faster in liquids than in gases. This is because <u>the speed of the mechanical waves is determined by a relationship between the elastic properties of the medium </u>in which they are propagated and the mass per unit volume of the medium (that is:<u>density</u>).
In other words: The speed of sound varies depending on the medium through which the sound waves travel.
So, if we are told the sound wave initially had a speed of 4,000 m/s and it suddenly decreases to 1,500 m/s, this means the sound waves passed from a solid medium to a liquid medium.
Hence, the correct option is: an underground lake.
Answer:
An aircraft flying at sea level with a speed of 220 m/s, has a highest pressure of 29136.8 N/m²
Explanation:
Applying Bernoulli's equation, we determine the highest pressure on the aircraft.

where;
P is the highest pressure on the aircraft
is the density of air = 1.204 kg/m³ at sea level temperature.
V is the velocity of the aircraft = 220 m/s
P = 0.5*1.204*(220)² = 29136.8 N/m²
Therefore, an aircraft flying at sea level with a speed of 220 m/s, has a highest pressure of 29136.8 N/m²
Answer:
2.9 A
Explanation:
L = 16 cm = 0.16 m
B = 0.19 T
m = 9 g = 0.009 kg
Let the minimum current be i.
Magnetic force is balanced by the gravitational force
B x i x L = m x g
0.19 x i x 0.16 = 0.009 x 9.8
i = 2.9 A
Answer: approximately 50%
Explanation: