The mechanical energy of the girl will be conserved because the system is isolated and the initial potential energy will be equal to final kinetic energy.
<h3>
What is the law of conservation of energy?</h3>
The law of conservation of energy states that energy can neither be created nor destroyed but can be transformed from one form to another.
The change in the potential energy of the launched from a height into the pool without friction from the given height h is calculated by applying the following kinematic equation.
ΔP.E = ΔK.E
where;
- ΔP.E is change in potential energy of the child
- ΔK.E is change in the kinetic energy of the child
mghf - mghi = ¹/₂mv² - ¹/₂mu²
where;
- m is the mass of the girl
- g is acceleration due to gravity
- hi is the initial height of the girl
- hf is the final height when she is launched into the pool
- u is the initial velocity
- v is the final velocity of the girl
Thus, for every closed or isolated system such as this case, mechanical energy is always conserved because the initial potential energy of the girl will be converted into her final kinetic energy.
Learn more about conservation of mechanical energy here: brainly.com/question/332163
#SPJ1
Answer: affect organisms
hope this helps you out .
Acceleration=velocity/time
acceleration=28/4.22
therefore, acceleration=6.64
Givens
=====
V
= 4.00 L
T
= 273oK We're assuming the temperature does not change, just the
pressure.
n
= 0.864 moles
R
= 8.314 joules / mole * oK
P
= ?????
Formula
======
PV
= n*R*T
P
= n*R*T/V
P
= 0.864 * 8.314 * 273 / 4
P
= 490 kpa
You
have to add 1.6 – 0.864 = 0.736 moles of gas.
We
have to assume that the temperature and pressure remain the same when
we add the 0.736 moles of gas. We are now looking for the volume.
PV
= n*R*T
<span>
V
= 0.736 * 8.314 * 273 / 490</span>
V
= 3.41 L Remember this is at about 4 atmospheres so we have to
convert to Standard Pressure.
Total
Volume = 3.41 + 4.00 = 4.41
V1
* P1 = V2 * P2
P1
= 490 kPa
P2
= 101 kPa
V1
= 7.41 L
V2
= ????
<span>
<span>
7.41*
490 = V2 * 101
V2
= 7.41 * 490 / 101
V2
= 35.94 L
</span>
</span>
<span>You
had 4 L now you need 31.94 more.</span>
Answer:
the rate of turn at any airspeed is dependent upon the horizontal lift component