1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sever21 [200]
1 year ago
6

If two normal distributions each have the same mean, but one has a standard deviation of 1 and the other has a standard deviatio

n of 5, what does that tell you about these 2 distributions?
Physics
1 answer:
likoan [24]1 year ago
8 0

In comparison to a distribution with a standard deviation of 5, one has a curve with a higher peak. The variability will be greater the larger the standard deviation. It denotes increased variability in a distribution with a standard deviation of 5.

<h3>What do you mean by the term standard deviation?</h3>

The term "standard deviation" (or "") refers to a measurement of the data's dispersion from the mean. A low standard deviation implies that the data are grouped around the mean, whereas a large standard deviation shows that the data are more dispersed. In contrast, a high or low standard deviation indicates that the data points are, respectively, above or below the mean. A standard deviation that is close to zero implies that the data points are close to the mean. the curve at the top is more dispersed and has a greater standard deviation than the curve at the bottom, which is more concentrated around the mean and has a lower standard deviation.

To learn more about standard deviation, Visit:

brainly.com/question/14650840

#SPJ4

You might be interested in
Which two statements are true about the wave shown?
Andreyy89

Answer:

B and C

Explanation:

7 0
2 years ago
Read 2 more answers
I need help please...
Natalka [10]
No cluuuueee :/ sowwwwyyy but good luck
6 0
3 years ago
Read 2 more answers
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
2 years ago
It takes you 5 min to walk with an average velocity of .75 m/s to the north from the parking lot to the entrance of the amusemen
skad [1K]
A displacement is a vector quantity that takes into account the shortest distance from the starting point to the endpoint. 

The given above gave a time interval in minutes which needs to be converted to seconds. Given that each minute is 60 seconds, 5 minutes equal 300 seconds. To determine the distance, multiply time with speed. The product is 225 m. 

Thus, the displacement is 225 m. 
3 0
3 years ago
What are examples of non mechanical energy
ExtremeBDS [4]

Atoms, molecules, electrons, photons, protons etc.

3 0
3 years ago
Other questions:
  • A ball having a mass of 0.20 kilograms is placed at a height of 3.25 meters. If it is dropped from this height, what will be the
    10·2 answers
  • 4. Identify Problems A student is describing a longitudinal wave in his notebook. He
    10·1 answer
  • A centripetal force of 5.0 newtons is applied to a rubber stopper moving at a constant speed in a horizontal circle. If the same
    12·1 answer
  • The Temperatureslider controls the heat of the metal filamentinside the light. Scientists use the Kelvin scaleto measure the tem
    9·1 answer
  • Imagine that someone is sitting down to enjoy a cup of coffee or hot chocolate. Use your experiences to describe how heat flows
    6·2 answers
  • A robin in flight has 20.8 J of PE when it is 27.6 m high. What is the mass of the robin? (Unit = kg)
    8·2 answers
  • A 310-km-long high-voltage transmission line 2.00 cm in diameter carries a steady current of 1,010 A. If the conductor is copper
    11·1 answer
  • The constellation Canis Minor has a binary star system consisting of Procyon A and Procyon B. Procyon A, at 3×1030kg, has 2.5 ti
    12·1 answer
  • 6) If I were to drop a ball out of my car while I was traveling at a velocity of 25 m/s, and it underwent a
    14·2 answers
  • how long will it take the bird to cover a ground distance of 550 km from north to south? (note that even on cloudy nights, many
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!