A geologic event causes changes to the physical makeup of a particular place and occurs slowly.
Geological events are what causes numerous changes and phenomena on the Earth's surface. Examples of these events include cliff erosion, volcanic eruption, or sedimentation at a mouth of a river.
Geological processes are extremely slow. However, because of the immense lengths of time involved, huge physical changes do occur - mountains are created and destroyed, continents form, break up and move over the surface of the Earth, coastlines change and rivers and glaciers erode huge valleys.
Geological events are both classified as internal and external. This means that these events occur both in the Earth's surface and interior.
The force exerted by a pressure of any gas over a surface its given by the formula P=F/S (where P is pressure, F force and S surface).
We can multiply both sides of the formula by S to obtain the force.
P*S=(F*S)/S
P*S=F
Solve for P=1.80*10^5 Pa and S=4.10*10^-4 m^2 ([Pa] =[N/m^s])
(1.80*10^5 N/m^s) * (4.10*10^-4 m^2) =F
73.8 N =F
The answer is 107 degrees. The geometric shape for ammonia is Trigonal Pyramidal, even though its electron geometry is “Tetrahedral”. This is because ammonia has a lone pair of electrons that occupy its space like the other 3 hydrogens in the geometric structure.
The answer 180 degrees. This is because of the linear geometric structure of carbon dioxide. The oxygen atom is on either side of the carbon atom, each is bound by a double covalent bond. All the atoms are involved in the bond and there are no one pair electrons.
The answer is tetrahedral geometry. This is because all the 4 valence electrons of the carbon are involved in a bond with a hydrogen atom. The angles in a tetrahedral geometric arrangement, such as in methane, is 109.5 degrees, where the hydrogen atoms are as far apart, from each other, as possible .
Answer:
The second one is correct.
Explanation:
=