Answer:
a) 4.49Hz
b) 0.536kg
c) 2.57s
Explanation:
This problem can be solved by using the equation for he position and velocity of an object in a mass-string system:
for some time t you have:
x=0.134m
v=-12.1m/s
a=-107m/s^2
If you divide the first equation and the third equation, you can calculate w:
with this value you can compute the frequency:
a)
b)
the mass of the block is given by the formula:
c) to find the amplitude of the motion you need to know the time t. This can computed by dividing the equation for v with the equation for x and taking the arctan:
Finally, the amplitude is:
Stark contrast to paths on energy surfaces or even mechanistic reactions, rule-based and inductive computational approaches to reaction prediction mostly consider only overall transformations. Overall transformations are general molecular graph rearrangements reflecting only the net change of several successive mechanistic reactions. For example, Figure 1 shows the overall transformation of an alkene interacting with hydrobromic acid to yield the alkyl bromide along with the two elementary reactions which compose the transformation.
Efficiency = Work Output / Work Input
92% = Work Output / 100
0.92 = Work Output / 100
Work Output = 0.92 * 100
Work Output = 92 joules.
Answer:
60 N
Explanation:
This is just Newton's Second Law
F = m*a
F = ?
m = 12 kg
a = 5 m/^2
F = 5*12 = 60 Newtons