Answer:
0.085 moles of N₂O₅ are needed
Explanation:
Given data:
Mass of NO₂ produces = 7.90 g
Moles of N₂O₅ needed = ?
Solution:
2N₂O₅ → 4NO₂ + O₂
Number of moles of NO₂ produced :
Number of moles = mass/ molar mass
Number of moles = 7.90 g/ 46 g/mol
Number of moles = 0.17 mol
now we will compare the moles of NO₂ with N₂O₅.
NO₂ : N₂O₅
4 : 2
0.17 : 2/4×0.17 = 0.085 mol
Thus, 0.085 moles of N₂O₅ are needed.
Answer:
When heated, the molecules of the liquid in the thermometer move faster, causing them to get a little further apart. This results in movement up the thermometer. When cooled, the molecules of the liquid in the thermometer move slower, causing them to get a little closer together.
Explanation:
I hope it can help
Combustion equation of n-hexane:
2C₆H₁₄ + 19O₂ → 12CO₂ + 14H₂O
a)
Assuming we have 100 moles of air,
Oxygen = 20.9 moles
n-hexane required = 20.9/19 x 2
= 2.2 moles
LFL = Half of stoichometric amount = 2.2 / 2 = 1.1
LFL n-hexane = 1.1%
b)
1.1 volume percent required for LFL
1.1% x 1
= 0.0011 m³ of n-hexane required
Answer:
0.465
Explanation:
To find the volume of a substance, divide the mass by the density.
M/D = V
10.0 / 21.5 = 0.4651163
Then round to 3 significant figures: and the density is 0.465
Most renewable<span> energy comes either directly or indirectly from the </span>sun<span>. </span>Sunlight<span>, or solar energy, can be used directly for heating and lighting homes and other buildings, for generating electricity, and for hot water heating, solar cooling, and a variety of commercial and industrial uses.
</span>