Answer:

Explanation:
We are given that
Initial kinetic energy of an electron=K
Distance=d
Final velocity=v=0
Charge,q=-1e
We have to find the magnitude of electric field.
Work done=
Using the formula
Work done=
Using work energy theorem
Work done=Final K.E-Initial K.E=0-K
Work done=-K
Substitute the values
-K=-eEd
K=eEd

Hence, the magnitude of the electric field=
The compression curve would be theoretically given for a system of bodies in which the spring applies the force (Although in the same way the following process can be extrapolated to any system, depending on the type of Force to consider) For a spring mass system, the strength is given by Hooke's law as

Where,
K = Spring constant
x = Displacement
If we integrate based on distance we would have

This integral represents the area under the Force Curve based on each distance segment traveled.



This is the same formula that represents the elastic potential energy of a body. Therefore the correct answer is D.
Answer:
Gamma Rays
Explanation:
Gamma rays have the highest energies the shortest wavelengths and the highest frequencies. They have the highest energies because they have the highest frequencies, the higher the frequency the more energy. ( I think, maybe double check with other answers )
Good Luck :)
Newton’s first law is motion. For example, an object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force.