Answer:
I do not have enough information to tell
Explanation:
This is deduced due to the fact that if the net force due to B and C on A is zero, the charges on B and C could either be positive or negative depending on the charge on A.
To begin with, we can use the formula that links frequency, wavelength and velocity.
Because you already have the wavelength and the frequency, you just need to solve for velocity. You can do this by multiplying each side of the equation by frequency.
Therefore, 400 x 2.5 = 1000m/s.
Hope this helps :)
Answer:
<em>10.90km</em>
Explanation:
Magnitude of the total displacement is expressed using the equation
d = √dx²+dy²
dx is the horizontal component of the displacement
dy is the vertical component of the displacement
dy = -6.7sin27°
dy = -6.7(0.4539)
dy = -3.042
For the horizontal component of the displacement
dx = -4.5 - 6.7cos27
dx = -4.5 -5.9697
dx = -10.4697
Get the magnitude of the bicyclist's total displacement
Recall that: d = √dx²+dy²
d = √(-3.042)²+(-10.4697)²
d = √9.2538+109.6146
d = √118.8684
<em>d = 10.90km</em>
<em>Hence the magnitude of the bicyclist's total displacement is 10.90km</em>
<em></em>