You’re right, bc I’m the question it says the pulley is at equilibrium
Answer:
The height reached by the material on Earth is 91 km.
Explanation:
Given that,
Mass 
Radius = 1821 km
Height 
Suppose we need to find that how high would this material go on earth if it were ejected with the same speed as on Io?
We need to calculate the acceleration due to gravity on Io
Using formula of gravity

Put the value into the formula


Let v be the speed at which the material is ejected.
We need to calculate the height
Using the formula of height

Using ratio of height of earth and height of Io


Put the value into the formula





Hence, The height reached by the material on Earth is 91 km.
A no . answer is velocity of the object. B no.answer is Acceleration of the object. C no.answer is straight line shape and a velocity graph with a horizontal shape D no.answer is curved shape and a velocity graph with a straight shape.
The question isn't clear enough, I think it ask us to calculate the linear speed of a point at the edge of the DVD.
Now let's imagine we're a point at the edge of the DVD, we're undergoing a circular motion. Each minute we will complete a circular track 7200 times, now we need to know the distance we travel each turn. The perimeter of the DVD, a circular object is:

Know recall that:

We now need to know how much distance is traveled during a minute or 60 seconds:

Finally we divide this result with t=60 seconds:


Where the distance units were named units as the length unit is not specified in this exercise.<span />
Answer:
0.47 J
Explanation:
The elastic potential energy of a spring is given as,
E = 1/2ke²........................ Equation 1
Where E = Elastic potential energy, k = spring constant, e = extension/compression.
Given: k = 15 N/m, e = 0.25 m.
Substitute into equation 1.
E = 1/2(15)(0.25)²
E = 0.46875
E ≈ 0.47 J.
Hence the elastic potential energy stored in the spring = 0.47 J