Answer:
it is incomplete, is this te entire tree
Explanation:
The density of He is 1.79 x 10⁻⁴ g/mL
In other words in 1 mL there's 1.79 x 10⁻⁴ g of He.
To fill a volume of 6.3 L the mass of He required
= 1.79 x 10⁻⁴ g/mL * 6300 mL
= 11 277 * 10⁻⁴ g
Therefore mass of He required = 1.1277 g of He
Answer:
0.5188 M or 0.5188 mol/L
Explanation:
Concentration is calculated as <u>molarity</u>, which is the number of moles per litre.
***Molarity is represented by either "M" or "c" depending on your teacher. I will use "c".
The formula for molarity is:
n = moles (unit mol)
V = volume (unit L)
<u>Find the molar mass (M) of potassium hydroxide.</u>
<u>Calculate the moles of potassium hydroxide.</u>
Carry one insignificant figure (shown in brackets).
<u>Convert the volume of water to litres.</u>
Here, carrying an insignificant figure doesn't change the value.
<u>Calculate the concentration.</u>
<= Keep an insignificant figure for rounding
<= Rounded up
<= You use the unit "M" instead of "mol/L"
The concentration of this standard solution is 0.5188 M.
Answer:
Group 1 metals and transition metals are different from each other, mainly based on the colour of the chemical compounds that they form. The key difference between group 1 metals and transition metals is that the group 1 metals form colourless compounds, whereas the transition metals form colourful compounds.
Answer: THE ANSWER IS OZONE WEEEE a layer in the earth's stratosphere at an altitude of about 6.2 miles (10 km) containing a high concentration of ozone, which absorbs most of the ultraviolet radiation reaching the earth from the sun.
Explanation: