As atomic number increases atomic radii also increase down group 1. ionisation energy down group 1 will also decrease because as atomic radii gets bigger there is less electrostatic force between nuclei and electrons so less energy needed to remove valence electron.
AgNO₃ will act as the oxidising agent.
<h3><u>For the given chemical equation:</u></h3>
Cu + 2AgNO₃ → 2Ag + Cu(NO₃)₂
Half reactions for the given chemical reaction:
<u>Reducing agent:</u>
Cu → Cu²⁺ + 2e⁻
Copper is a reducing agent because it is losing 2 electrons, which causes an oxidation process.
<u>Oxidising Agent</u>:
Ag⁺ + e⁻ → Ag
The silver ion undergoes a reduction process and is regarded as an oxidizing agent since it is acquiring one electron per atom.
Hence, AgNO₃ is considered as an oxidizing agent and therefore the correct answer is Option B.
<h3><u>
Oxidising and Reducing agents</u></h3>
- An oxidizing agent is a substance that reduces itself after oxidizing another material. It passes through a reduction process in which it obtains electrons and the substance's oxidation state is decreased.
- A reducing agent is a chemical that oxidizes after reducing another material. It passes through an oxidation process in which it loses electrons and the substance's oxidation state increases.
To know more about the process of Oxidation and Reduction, refer to:
brainly.com/question/4222605
#SPJ4
Also, remember, light energy (from the sun) is a reactant for photosynthesis. The plant uses water sunlight and carbon dioxide to make sugars as well as oxygen. Plants, the organisms that carry out photosynthesis, are typically the first ate organism is a Food chain and so most other organisms energy came from the plant somehow. But the plant got its energy from the sun.
Answer:
Option D. 30 g
Explanation:
The balanced equation for the reaction is given below:
2Na + S —> Na₂S
Next, we shall determine the masses of Na and S that reacted from the balanced equation. This is can be obtained as:
Molar mass of Na = 23 g/mol
Mass of Na from the balanced equation = 2 × 23 = 46 g
Molar mass of S = 32 g/mol
Mass of S from the balanced equation = 1 × 32 = 32 g
SUMMARY:
From the balanced equation above,
46 g of Na reacted with 32 g of S.
Finally, we shall determine the mass sulphur, S needed to react with 43 g of sodium, Na. This can be obtained as follow:
From the balanced equation above,
46 g of Na reacted with 32 g of S.
Therefore, 43 g of Na will react with = (43 × 32)/46 = 30 g of S.
Thus, 30 g of S is needed for the reaction.