Answer:
The thermal energy is the sum of the potential energy and kinetic energy that is known to make all the particle in an object it is the energy that is responsible for its temperature heat is the flow of thermal energy thermal energy is the result of something that has some internal temperature which can be measured
1. In a single atom, no more than 2 electrons can occupy a single orbital? A. True
2. The maximum number of electrons allowed in a p sublevel of the 3rd principal level is?
B.6
3. A neutral atom has a ground state electronic configuration of 1s^2 2s^2. Which of the following statements concerning this atom is/are correct?
B. All of the above.
Answer:
x = 0.974 L
Explanation:
given,
length of inclination of log = 30°
mass of log = 200 Kg
rock is located at = 0.6 L
L is the length of the log
mass of engineer = 53.5 Kg
let x be the distance from left at which log is horizontal.
For log to be horizontal system should be in equilibrium
∑ M = 0
mass of the log will be concentrated at the center
distance of rock from CM of log = 0.1 L
now,
∑ M = 0



x = 0.974 L
hence, distance of the engineer from the left side is equal to x = 0.974 L
Answer:
Generally speaking, scientists have developed four different methods of determining the age of the earth. By using these methods, or a combination of them, the age of geological formations created by past events and even the fossilized bones of prehistoric animals can be determined.
Based on the research done by scientists, the Geologic Column, a graph that illustrates earth age, was developed. The Column, with its names for the epochs and eras of time, illustrates what scientists think was taking place in earth history. A small version of the Geologic Column is pictured at the right.
Explanation:
I hope this helps :)
Answer:1.084
Explanation:
Given
mass of Pendulum M=10 kg
mass of bullet m=5.5 gm
velocity of bullet u
After collision let say velocity is v
conserving momentum we get


Conserving Energy for Pendulum
Kinetic Energy=Potential Energy

here
from diagram
therefore

initial velocity in terms of v

For first case 

for second case 

Therefore 


i.e.