Answer:
In general, the annual sea surface temperatures(SSTs) in the Bay of Bengal(BOB) are higher than the Arabian sea(AS). because, there are two main reasons for higher SST in the Bay of Bengal than the Arabian Sea. they are 1. stratification, 2.strong mixing
stratification is nothing but a phenomenon which stratifies(layers) the sea water when different density water(fresh water, rain water) add into the sea water. So the stratification in the bay of Bengal is comparatively high than the Arabian sea due to the high river discharge and precipitation in the BOB than the AS. the mixing process over the Arabian sea is higher than the Bay of Bengal due to the prevailing of strong winds over the AS (because of the presence of the mountains of east Africa) than Bay of Bengal (because of the winds over the BOB are sluggish in nature then the AS). But generally winds over the sea mixes easily the normal sea water than stratified/stabilized sea water column. That's why less mixing will takes place over the surface of BOB than the AS. So due to the presence of less mixing over the surface of the Bay of Bengal than the Arabian sea, the SST values over the Arabian sea are always lower than the Bay of Bengal. that's why the Arabian sea is colder than the Bay of Bengal.
Explanation:
Answer:
b
Explanation:
Brownian motion is the random movement of particles in a fluid due to their collisions with other atoms or molecules. ... Brownian motion takes its name from the Scottish botanist Robert Brown, who observed pollen grains moving randomly in water. He described the motion in 1827 but was unable to explain it.
Answer:
Explanation:
Given
mass of saturated liquid water 
at
specific volume is
(From Table A-4,Saturated water Temperature table)



Final Volume 


Specific volume at this stage



Now we see the value and find the temperature it corresponds to specific volume at vapor stage in the table.



The speed of a wave in a uniform medium doesn't depend on its wavelength.
Answer:

Explanation:
From the question we are told that:
Frequency of 3rd harmonics 
Frequency of 5th harmonics 
Generally the equation for Wavelength at 3rd Harmonics is mathematically given by

Therefore

Generally the equation for Wavelength at 1st Harmonics is mathematically given by

Therefore

Generally the equation for the frequency of the first harmonic is mathematically given by


