Forget about the car's speed. You don't need it.
The tires spin 840 rpm. That's 840 <em>Revolutions per Minute</em> .
There are 60 seconds in 1 minute. So something that happens 840 times in 1 minute happens (840 / 60) times every second.
(840 rev per minute) / (60) = <em>14 revs per second</em> .
Answer: the rider’s pedal force must be greater than friction and the force of gravity
Explanation:
This is because if the pedal force was less, you would go slower, and it is obviously not impossible to ride up a hill without increasing speed. But if the force was greater, your speed would increase.
Answer:
3.014 x 10⁻⁸ N
Explanation:
q = magnitude of charge on the supersonic jet = 0.55 μC = 0.55 x 10⁻⁶ C
v = speed of the jet = 685 m/s
B = magnitude of magnetic field in the region = 8 x 10⁻⁵ T
θ = angle between the magnetic field and direction of motion = 90
magnitude of the magnetic force is given as
F = q v B Sinθ
F = (0.55 x 10⁻⁶) (685) (8 x 10⁻⁵) Sin90
F = 3.014 x 10⁻⁸ N
If a cruise ship is having troubles with buoyancy, then spread the weight of the ship over a greater volume.
Answer: Option D
<u>Explanation:
</u>
Buoyancy is the upward thrusting phenomenon of water acting on any object immersed partially or fully in water body. Hence, it creates the buoyant forces that is inversely proportionate to the immersing body's density. If the immersing body's density is higher than the density of the immersing medium then the body will get completely immersed in the water.
Similarly, in case of less, the buoyant forces act on the body will prevent it from complete immersion and allow it to float on water. Mostly cruise ships and other navy vessels use this phenomenon to keep on floating on surface of water.
In the present condition, the solution for buoyancy problem faced by a cruise ship can be solved by decreasing the density of the ship. And the ship's density can be decreased by increasing the ship's volume or by spreading the ship's weight over a greater volume.
Answer:
Explanation:
Given that, current generated from lightning range from
10⁴ A < I < 10^5 A
We know that,
The magnetic force is given as
F = iLB
The magnetic field on the earth surface is
B = 10^-5 T
So, let assume the worst case of a 15m flag pole
L = 15m
Then,
F = iLB
F = 10^5 × 10 × 10^-5
F = 15 N
Therefore, 15N is fairly strong so it will come to the material that was use for the material of the flag pole.
Therefore, it is possible that the student is right depending on the material of the flag pole.