1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mazyrski [523]
3 years ago
13

một quả bóng quần vợt nặng 0,060kg chuyển động với tốc độ 45,0m/s va vào bức tường dưới một góc 45 độ rồi bật trở ra với ucngf t

ốc độ cũng ở góc 45 độ . thòi gian va chạm là 4,00m/s
Physics
1 answer:
Vinvika [58]3 years ago
5 0

can you tell in English.......

You might be interested in
-g A small block is attached to an ideal spring and is moving in SHM on a horizontal frictionless surface. The amplitude of the
Nina [5.8K]

Answer:

a= 92. 13 m/s²

Explanation:

Given that

Amplitude ,A= 0.165 m

The maximum speed ,V(max) = 3.9 m/s

We know that maximum velocity in the SHM  given as

V(max)  = ω A

ω=Angular speed

A=Amplitude

\omega =\dfrac{3.9}{0.165}\ rad/s

ω=23.63 rad/s

The maximum acceleration given as

a = ω² A

a= (23.63)² x 0.165 m/s²

a= 92. 13 m/s²

Therefore the maximum magnitude of the acceleration will be 92. 13 m/s².

5 0
3 years ago
The amount of friction divided by the weight of an object forms a unit less number called the
Romashka [77]

Answer:

Coefficient of friction.

Explanation:

The amount of friction divided by the weight of an object is equal to the coefficient of friction. It is a dimensional less number. It can be given by :

F=\mu N

N is normal force.

\mu = coefficient of friction

\mu=\dfrac{F}{N}

3 0
3 years ago
A long metal cylinder with radius a is supported on an insulating stand on the axis of a long, hollow, metal tube with radius b.
bija089 [108]

a)

i) Potential for r < a: V(r)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

ii) Potential for a < r < b:  V(r)=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r}

iii) Potential for r > b: V(r)=0

b) Potential difference between the two cylinders: V_{ab}=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

c) Electric field between the two cylinders: E=\frac{\lambda}{2\pi \epsilon_0} \frac{1}{r}

Explanation:

a)

Here we want to calculate the potential for r < a.

Before calculating the potential, we have to keep in mind that the electric field outside an infinite wire or an infinite cylinder uniformly charged is

E=\frac{\lambda}{2\pi \epsilon_0 r}

where

\lambda is the linear charge density

r is the distance from the wire/surface of the cylinder

By integration, we find an expression for the electric potential at a distance of r:

V(r) =\int Edr = \frac{\lambda}{2\pi \epsilon_0} ln(r)

Inside the cylinder, however, the electric field is zero, because the charge contained by the Gaussian surface is zero:

E=0

So the potential where the electric field is zero is constant:

V=const.

iii) We start by evaluating the potential in the region r > b. Here, the net electric field is zero, because the Gaussian surface of radius r here contains a positive charge density +\lambda and an equal negative charge density -\lambda. Therefore, the net charge is zero, so the electric field is zero.

This means that the electric potential is constant, so we can write:

\Delta V= V(r) - V(b) = 0\\\rightarrow V(r)=V(b)

However, we know that the potential at b is zero, so

V(r)=V(b)=0

ii) The electric field in the region a < r < b instead it is given only by the positive charge +\lambda distributed over the surface of the inner cylinder of radius a, therefore it is

E=\frac{\lambda}{2\pi r \epsilon_0}

And so the potential in this region is given by:

V(r)=\int\limits^b_r {Edr} = \frac{\lambda}{2\pi \epsilon_0}  (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r} (1)

i) Finally, the electric field in the region r < a is zero, because the charge contained in this region is zero (we are inside the surface of the inner cylinder of radius a):

E = 0

This means that the potential in this region remains constant, and it is equal to the potential at the surface of the inner cylinder, so calculated at r = a, which can be calculated by substituting r = a into expression (1):

V(a)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

And so, for r<a,

V(r)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

b)

Here we want to calculate the potential difference between the surface of the inner cylinder and the surface of the outer cylinder.

We have:

- Potential at the surface of the inner cylinder:

V(a)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

- Potential at the surface of the outer cylinder:

V(b)=0

Therefore, the potential difference is simply equal to

V_{ab}=V(a)-V(b)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

c)

Here we want to find the magnitude of the electric field between the two cylinders.

The expression for the electric potential between the cylinders is

V(r)=\int\limits^b_r {Edr} = \frac{\lambda}{2\pi \epsilon_0}  (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r}

The electric field is just the derivative of the electric potential:

E=-\frac{dV}{dr}

so we can find it by integrating the expression for the electric potential. We find:

E=-\frac{d}{dr}(\frac{\lambda}{2\pi \epsilon_0} (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0} \frac{1}{r}

So, this is the expression of the electric field between the two cylinders.

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
3 years ago
A car is 200 m from a stop sign and traveling toward the sign at 40.0 m/s. At this time, the driver suddenly realizes that she m
victus00 [196]

Answer:

The acceleration of the car will be a=9600m/sec^

Explanation:

We have given that distance from stop sign s = 200 m

Time t = 0.2 sec

We have to find the constant acceleration

Now from second equation of motion s=ut+\frac{1}{2}at^2

200=40\times 0.2+\frac{1}{2}\times a\times 0.2^2

a=9600m/sec^

So the acceleration of the car will be a=9600m/sec^

6 0
3 years ago
Different _ of an element have different numbers of neutrons?
natali 33 [55]

Answer:

Isotopes

Explanation:

Your welcome

4 0
3 years ago
Read 2 more answers
Other questions:
  • Simon is riding a bike at 12 km/h away from his friend Keesha. He throws a ball at 5 km/h back to Keesha, who is standing still
    14·1 answer
  • Why plate tectonics is a scientific theory and not a scientific law.
    7·1 answer
  • Willingness to take turns is one way we can express our attitudes in
    6·1 answer
  • A constant current of I = 15 A exists in a solenoid whose inductance is L = 2.8 H. The current is then reduced to zero in a cert
    7·1 answer
  • A 1.5m wire carries a 2 A current when a potential difference of 55 V is applied. What is the resistance of the wire?
    9·1 answer
  • A good description of magnets would be, "Magnets are
    6·1 answer
  • Newton first law of motion​
    13·1 answer
  • Acellus
    8·1 answer
  • She left the cubes in the water for three hours which of the following describes a heat flow that took place during those three
    8·2 answers
  • What is the relationship between frequency and pitch?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!