Answer:
Explanation:
Radius of dee, r = 8 mm = 0.008 m
Electric field, e = 400 V/m
Magnetic field, B = 4.7 x 10^-4 T
mass of electron, m = 9.1 x 10^-31 kg
charge of electron, q = 1.6 x 10^-19 C
(a) Let v is the speed of electrons.
![v = \frac{Bqr}{m}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7BBqr%7D%7Bm%7D)
![v = \frac{4.7\times 10^{-4}\times 1.6\times 10^{-19}\times 0.008}{9.1 \times 10^{-31}}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7B4.7%5Ctimes%2010%5E%7B-4%7D%5Ctimes%201.6%5Ctimes%2010%5E%7B-19%7D%5Ctimes%200.008%7D%7B9.1%20%5Ctimes%2010%5E%7B-31%7D%7D)
v = 661098.9 = 661099 m/s
(b)
![\frac{e}{m}=\frac{1.6 \times 10^{-19}}{9.1\times 10^{-31}}](https://tex.z-dn.net/?f=%5Cfrac%7Be%7D%7Bm%7D%3D%5Cfrac%7B1.6%20%5Ctimes%2010%5E%7B-19%7D%7D%7B9.1%5Ctimes%2010%5E%7B-31%7D%7D)
e / m = 1.76 x 10^14 C / kg
(c) Let K be the kinetic energy
K = 0.5 x mv²
K = 0.5 x 9.1 x 10^-31 x 661099 x 661099
K = 1.99 x 10^-19 J
K = 1.24 eV
So, the potential difference is
V = 1.24 V
(d) if the acceleration voltage is doubled
V = 2 x 1.24 = 2.48 V
So, Kinetic energy
K = 2.48 eV
K = 2.48 x 1.6 x 10^-19 = 3.968 x 10^-19 J
Let v is the speed
K = 0.5 x mv²
3.968 x 10^-19 = 0.5 x 9.1 x 10^-31 x v²
v = 933856.5 m/s
Let the new radius is r.
![r=\frac{mv}{Bq}](https://tex.z-dn.net/?f=r%3D%5Cfrac%7Bmv%7D%7BBq%7D)
![r=\frac{9.1\times 10^{-31}\times 933856.5}{4.7\times 10^{-4}\times 1.6\times 10^{-19}}](https://tex.z-dn.net/?f=r%3D%5Cfrac%7B9.1%5Ctimes%2010%5E%7B-31%7D%5Ctimes%20933856.5%7D%7B4.7%5Ctimes%2010%5E%7B-4%7D%5Ctimes%201.6%5Ctimes%2010%5E%7B-19%7D%7D)
r = 0.0113 m = 1.13 cm