Answer:
The right answer is D) the total momentum of the system is 0.047 kg · m/s toward the right.
Explanation:
Hi there!
The total momentum of the system is given by the sum of the momentum vectors of each cart. The momentum is calculated as follows:
p = m · v
Where:
p = momentum.
m = mass.
v = velocity.
Then, the momentum of the system will be the momentum of cart A plus the momentum of cart B (let´s consider the right as the positive direction):
mA · vA + mB · Vb
0.450 kg · 0.850 m/s + 0.300 kg · (- 1.12 m/s) = 0.047 kg · m/s
The right answer is D) the total momentum of the system is 0.047 kg · m/s toward the right.
The question is incomplete. Here is the complete question.
A floating ice block is pushed through a displacement vector d = (15m)i - (12m)j along a straight embankment by rushing water, which exerts a force vector F = (210N)i - (150N)j on the block. How much work does the force do on the block during displacement?
Answer: W = 4950J
Explanation: <u>Work</u> (W), in physics, is done when a force acts on an object that has a displacement form a place to another:
W = F · d
As the formula shows, Work is a scalar product, i.e, it results in a number, so, Work only has magnitude.
Force and displacement for the ice block are in 2 dimensions, then work will be:
W = (210)i - (150)j · (15)i - (12)j
W = (210*15) + (150*12)
W = 3150 + 1800
W = 4950J
During the displacement, the ice block has a work of 4950J
Answer:
Diferencia de energía de las dos fuentes = 800 watts
Explanation:
Cantidad de energía recibida en el mar = 1000
Cantidad de energía solar recibida en el mar = 200
Diferencia de energía de las dos fuentes = 1000 -200 = 800 watts
Answer:
c. 5.50 km
Explanation:
8 min * 1h/(60 min) = 8/60 = 2/15 h
15 sec* 1 min/60 sec = 1/4 min * 1h/(60 min) = 1/240 h
8 min 15 sec = (2/15+1/240)h
40 km/h *(2/15 +1/240)h =5.50 km
Relative dating observes the placement of fossils and rock in layers known as strata. Basically, fossils and rock found in lower strata are older than those found in higher strata because lower objects must have been deposited first, while higher objects were deposited last. Relative dating helps determine what came first and what followed, but doesn't help determine actual age.
Radiometric dating, or numeric dating, determines an actual or approximate age of an object by studying the rate of decay of radioactive isotopes, such as uranium, potassium, rubidium and carbon-14 within that object. Radioactive isotopes decay at a fixed rate. This rate provides scientists with an accurate measurement system to determine age. For example, carbon dating is used to determine the age of organic materials. Once something dies, it ceases taking in new carbon-14, and the existing carbon-14 within the organism decays into nitrogen at a fixed rate. Scientists measure the proportion of carbon-14 left in the organism to determine its age.