Answer:
It cancels recoil.
Explanation:
For each action there is an equal an opposite reaction.
The principle of conservation of momentum tell us that if a single spore were ejected the fern would suffer a recoil from it. This recoil would take energy and speed from the spore. But if they are ejected in pairs the recoil is canceled and all the energy is transferred to the spores resulting in higher speeds.
<u>Answer:</u>
The correct answer option is D. The distance between the planet and the Sun changes as the planet orbits the sun.
<u>Explanation:</u>
Kepler’s laws of planetary motion, derived by the German astronomer Johannes Kepler, are the laws of physics that describe the motions of the planets in the solar system.
According to the Kepler's first law of planetary motion: the path on which the planets orbit around the sun is elliptical in shape, with the center of the sun at one focus.
Therefore, the distance between the Sun and the planets vary as the planet orbit around the sun.
<h3><u>Answer;</u></h3>
= 20.436 seconds
<h3><u>Explanation;</u></h3>
Speed = Distance × time
Therefore;
Time = Distance/speed
Distance = 7.50 m, speed = 0.367 m/s
Time = 7.50/0.367
<u>= 20.436 seconds </u>
Answer:
the velocity is zero, the acceleration is directed downward, and the force of gravity acting on the ball is directed downward
Explanation:
Is this exercise in kinematics
v = v₀ - g t
where g is the acceleration of the ball, which is created by the attraction of the ball to the Earth.
At the highest point
velocity must be zero.
The acceleration depends on the Earth therefore it is constant at this point and with a downward direction.
The force of the earth on the ball is towards the center of the Earth, that is, down
all other alternatives are wrong