The answer is true, particles in the gaseous state are the furthest apart
4.1g
Explanation:
Given parameters:
Mass of carbon dioxide = 15g
Mass of oxygen gas = 11g
Unknown:
Mass of carbon consumed = ?
Solution:
Equation of the reaction:
C + O₂ → CO₂
To solve this problem from the balanced equation, we have to use the amount of product formed and work to Carbon. This is because, we are sure of the amount of carbon dioxide formed but the amount of the given oxygen gas used is not precise.
Number of moles of CO₂ = 
Molar mass of CO₂ = 12 + (16 x2) = 44g/mol
Number of moles of CO₂ =
= 0.34mole
From the equation of the reaction;
1 mole of CO₂ is produced from 1 mole of C
0.34mole of CO₂ will produce 0.34mole of C
Mass of carbon reacting = number of moles x molar mass = 0.34 x 12 = 4.1g
Learn more:
Number of moles brainly.com/question/1841136
#learnwithBrainly
The electron releases energy.
The following quantities will effect the reaction rate as follows:
1. On increasing Concentration of the reactant: Rate of the reaction will increases.
2. On increasing pressure : Increases the rate of reaction to the side where there are fewer number of molecules.
3.On increasing temperature of an endothermic reaction: Increases the rate of reaction
4. On decreasing temperature of an endothermic reaction: Increases the rate of reaction.
So the answer is increase pressure, decrease temperature, increase concentration will increases the rate of the reaction.
Answer:
The answer is 0.0698 M
Explanation:
The concentration was prepared by a serial dilution method.
The formula for the preparation I M1V1 = M2V2
M1= the concentration of the stock solution = 0.171 M
V1= volume of the stock solution taken = 200 mL
M2 = the concentration produced
V2 = the volume of the solution produced = 940 mL
Substitute these values in the formula
0.171 × 200 = 490 × M2
34.2 = 490 × M2
Make M2 the subject of the formula
M2 = 34.2/490
M2 = 0.069795
M2 = 0.0698 M ( 3 s.f)
The concentration of the Chemist's working solution to 3 significant figures is 0.0698M