Answer : The molecular weight of a substance is 157.3 g/mol
Explanation :
As we are given that 7 % by weight that means 7 grams of solute present in 100 grams of solution.
Mass of solute = 7 g
Mass of solution = 100 g
Mass of solvent = 100 - 7 = 93 g
Formula used :

where,
= change in freezing point
= temperature of pure water = 
= temperature of solution = 
= freezing point constant of water = 
m = molality
Now put all the given values in this formula, we get


Therefore, the molecular weight of a substance is 157.3 g/mol
1.24973017189471 is probably the answer to your equation
Answer:
Increasing substrate concentration also increases the rate of reaction to a certain point. Once all of the enzymes have bound, any substrate increase will have no effect on the rate of reaction, as the available enzymes will be saturated and working at their maximum rate.
Answer:
1552.83J Released
Explanation:
1. mass/m=225
Initial temp:86C, final:32.5C
Changed Temp: 32.5-86= -53.5C
s=0.129 J/gC
Formula: q= m times s times changed Temp.
q=(225)(0.129)(-53.5)
q= -1552.83 J
q=1552.83 J Released
2.99 °C is the change in temperature if a 40 g sample of water absorbs 500 calories of energy.
<h3>What is specific heat capacity?</h3>
The specific heat capacity is defined as the quantity of heat (J) absorbed per unit mass (kg) of the material when its temperature increases 1 K (or 1 °C), and its units are J/(kg K) or J/(kg °C).
Given data:
m = 40 g
Q = 500 J
Specific heat capacity of water = 4.18 J/g°C
Change in Temperature =?
The formula for Heat Energy is given by:
Q = mcp∆T
where: Q - Heat Energy
m - mass
cp - specific heat
∆T = change in temperature, 
Solution:
Substituting the value of m, specific heat capacity of water and Q in the formula,
500 J = (40 g)(4.18 J/g°C)(∆T)
∆T = 2.99 °C
Learn more about the specific heat capacity here:
https://brainly.ph/question/7099790
#SPJ1