I think it's an hour and a half
From the gravity acceleration theorem due to a celestial body or planet, we have that the Force is given as

Where,
F = Strength
G = Universal acceleration constant
M = Mass of the planet
m = body mass
r = Distance between centers of gravity
The acceleration by gravity would be given under the relationship


Here the acceleration is independent of the mass of the body m. This is because the force itself depended on the mass of the object.
On the other hand, the acceleration of Newton's second law states that

Where the acceleration is inversely proportional to the mass but the Force does not depend explicitly on the mass of the object (Like the other case) and therefore the term of the mass must not necessarily be canceled but instead, considered.
Answer:
Heat is added to a substance, but its temperature does not rise. Which one of the following statements provides the best explanation for this observation? the substance must be a gas. the substance must be a non-perfect solid. the substance undergoes a change of phase. the substance has unusual thermal properties. the substance must be cooler than its environment.
The answer is "B" - If there are no windows then there will be no light coming in, and therefore you don't have to worry about what time of day you do the experiment at.
Answer:
Ohms law
Explanation:
Which states that the current flowing through any cross-section of the conductor is directly proportional to the potential differenceapplied across its end, provided physical conditions like temperature and pressure remain constant.