Answer:
KE = KE (incidental) - KE of emitted photons
or KE = h * f - Wf
So h * f = KE + Wf = 1.2 + 1.88 = 3.08 incident energy
If you double the frequency then h * f = 6.16
KE = 6.16 - 1.2 = 4.96 eV
Answer:
R = 2216m and The normal force of the seat on the pilot is 5008N
Explanation:
See attachment below please.
Lean your shoulders back and your waist forwards. Use your arms as a counter weight.
Answer: The result of "the upper bound of the density" does not go on the denominator.
So simplified, no. The answer is no.
Answer:
false statement : b ) For the motion of a cart on an incline plane having a coefficient of kinetic friction of 0.5, the magnitude of the change in kinetic energy equals the magnitude of the change in gravitational potential energy
Explanation:
mechanical energy = potential energy + kinetic energy = constant
differentiating both side
Δ potential energy + Δ kinetic energy = 0
Δ potential energy = - Δ kinetic energy
first statement is true.
Friction is a non conservative force so inter-conversion of potential and kinetic energy is not possible in that case. In case of second option, the correct relation is as follows
change in gravitational potential energy = change in kinetic energy + work done against friction .
So given 2 nd option is incorrect.
In case of no change in gravitational energy , work done is equal to
change in kinetic energy.