The frequency of a simple harmonic oscillator such as a spring-mass system is given by

where
k is the spring constant
m is the mass attached to the spring.
Re-arranging the formula, we get:

and since we know the constant of the spring:

and the frequency of oscillation:
f=1.00 Hz
we can find the value of the mass attached to it:
Gravitational potential energy can be described as m*g*h (mass times gravity times height).
Originally,
15kg * 9.8m/s^2 *0.3 m = 44.1 kg*m^2/s^2 = 44.1 Joules.
After it is moved to a 1m shelf:
15kg * 9.8m/s * 1 = 147 kg*m^2/s^2= 147 Joules.
To find how much energy was added, we subtract final energy from initial energy:
147 J - 44.1 J = 102.9 Joules.
Gravity is what holds the planets in orbit around the sun and what keeps the moon in orbit around Earth. The gravitational pull of the moon pulls the seas towards it, causing the ocean tides. Gravity creates stars and planets by pulling together the material from which they are made.
Centripetal acceleration is directed along a radius so it may also be called the radial acceleration. If the speed is not constant, then there is also a tangential acceleration (at). The tangential acceleration is, indeed, tangent to the path of the particle's motion.
Answer:
49N
Explanation:
F=ma
We know the mass is 5kg, and since the ball is suspended on one cable, the acceleration is g, 9.8m/s^2
F=5kg*9.8m/s^2
= 49N
Hope this helps!