a) 1 mole of Ne
b) i/2 mole of Mg
c) 1570 moles of Pb.
d) 2.18125*10^-13 moles of oxygen.
Explanation:
The number of moles calculated by Avogadro's number in 6.23*10^23 of Neon.
6.23*10^23= 1/ 6.23*10^23
= 1 mole
The number of moles calculated by Avogadro's number in 3.01*10^23 of Mg
3.2*10^23=1/6.23*10^23
= 1/2 moles of Pb.
Number of moles in 3.25*10^5 gm of lead.
atomic weight of Pb=
n=weight/atomic weight
= 3.25*10^5/ 207
= 1570 moles of Pb.
Number of moles 4.50 x 10-12 g O
number of moles= 4.50*10^-12/16
= 2.18125*10^-13 moles of oxygen.
The partial pressure of the gas will be the total pressure minus the vapor pressure. 523.8-23.8=500mmHg. This makes sense due to the fact that the idea of partial pressures still works even with vapor pressure since vapor pressure is just the partial pressure of water vapor (23.8mmHg) in the container which is added to the partial pressure of hydrogen gas (500mmHg) to make a total pressure of 523.8mmHg.
I hope this helps. Let me know in the comments if anything is unclear.
One way is studying through a satelite in space already.
Answer:
That means that the isotope that has a mass number of 28 is probably the most abundant. This is because your average atomic mass is 28.086 amu, which is closest to 28.
Formula used to calculate average atomic mass follows:
average atomic mass=(atomic mass of an isotope)*(fractional abundance)
we are given=
Three isotopes of Silicon, which are Si-28, Si-29 and Si-30.
Average atomic mass of silicon = 28.086 amu
As, the average atomic mass of silicon is closer to the mass of Si-28 isotope. This means that the relative abundance of this isotope is the highest as compared to the other two isotopes.
Percentage abundance of Si-28 isotope = 92.2%
Percentage abundance of Si-29 isotope = 4.7 %
Percentage abundance of Si-30 isotope = 3.1%
Hence, the abundance of Si-28 isotope is the highest as compared to the other isotopes.
Answer:
b
Explanation:
b. ,u play with the ball, handle the ball grab the ball throw the ball exc.