The axial positions the bond angle is 120 degrees and in equatorial positions the bond angle is 90 degrees.
Functional groups on central atom gets reduce if lone pairs are added.
Explanation:
The number of lone pairs and base pairs of electrons tells the geometry of the molecule.
VSEPR Theory helps to know the lone pairs and bond pair electrons on the centre atom of the molecule.
Example of molecule containing 5 electron pairs can have four bond pairs and 1 lone pair.
eg: Cl
the repulsion is shown as
lp-lp> lp-bp>bp-bp
These are in equatorial position because of the repulsion of lone pairs.
It can have 2 lone pairs and 3 bond pairs. eg. Xe
Lone pairs in this is also in equatorial position as
lp-lp> lp-bp> bp-bp
In axial positions the bond angle is 120 degrees
in equatorial positions the bond angle is 90 degrees, due to the repulsion in lone pair of electrons.
If 1 lone pair is there it can be replaced by bonding with hydrogen.
If 2 lone pairs are there then bonding with oxygen is there. The covalent bond is formed.
A. potential energy.
It can't be any of the above questions. When the automobile burns gas it converts the potential energy into chemical energy which intern gets converted into mechanical energy and then into kinetic energy.
I would have thought it would be Chemical potential energy, which is referring to the energy between the bonds in the molecule.
Hoped this helped.
We know that the particles in a matter have energy. They have kinetic energy, potential energy, chemical energy, electrical energy etc.
When we give heat to a matter it gains energy and there is an increase in its internal energy. Or we can say that particles in a matter have more energy at higher temperature than particles in a matter at low temperature
As ice is formed below zero degree celsius so the particles in ice must have lesser energy than water at higher temperature.
Thus true statement will be
The particles in boiling water have more energy than the particles in ice water do.
B. alcohol
Hydroxyl group is an -OH branch
so,
R - OH is alcohol