D), because the roller coaster it's falling, therefore, losing height, but gaining velocity
Answer:
Total energy of the object = mgh. As it falls, its potential energy will change into kinetic energy. If v is the velocity of the object at a given instant, the kinetic energy = 1/2mv2.
Explanation:
Answer:
Inertia = angular momentum / angular velocity
Hello. You did not enter the data to which this question refers, which makes it impossible for it to have an exact answer. However, I will try to help you in the best possible way.
The forces that hold the elements together are called intermolecular forces. They are formed by covalent bonds between the molecules and can be called: dipole-induced (occurs between nonpolar molecules that have a negative pole and a positive pole) and dipole-dipole (occurs between polar moileculas, except when hydrogen is present).
The wavelength of the interfering waves is 3.14 m.
<h3>Calculation:</h3>
The general equation of a standing wave is given by:
y = 2A sin (kx) cos (ωt) ......(1)
The given equation represents the standing wave produced by the interference of two harmonic waves:
y = 3 sin (2x) cos 5t .......(2)
Comparing equations (1) and (2):
k = 2
We know that,
k = 2π/λ
λ = 2π/k
λ = 2 (3.14)/ 2
λ = 3.14 m
Therefore, the wavelength of the interfering waves is 3.14 m.
I understand the question you are looking for is this:
Two harmonic waves traveling in opposite directions interfere to produce a standing wave described by y = 3 sin (2x) cos 5t where x is in m and t is in s. What is the wavelength of the interfering waves?
Learn more about interfering waves here:
brainly.com/question/2910205
#SPJ4