1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
3 years ago
12

A liquid phase reaction, A+B à C+D is to be carried out in a well-mixed ideal batch reactor with a constant volume of 10 liters.

The initial concentration of A is 4.71 mol/L, and the initial concentration of B is one half of the initial concentration of A. If the rate of formation of compound D is given by rD = k*CA*CB, with k = 4.5 L/(mol min), calculate the amount of time (in minutes) needed to achieve a conversion of the limiting reactant of 0.86.

Physics
1 answer:
Margaret [11]3 years ago
8 0

Answer:

Explanation:

Given data

  • rate of formation of compound D
  • rD = k*CA*CB
  • Volume V = 10 L
  • initial concentration of A = CA0 = 4.71mol/L
  • Initial concentration of B = one half of the initial concentration of A
  • CB0 = 0.5 x 4.71 mol/L = 2.355 mol/L
  • A + B = C + D
  • From the stoichiometry of the reaction

  • Mol ratio of A : B = 1 : 1

  • moles of A > moles of B

  • B is limiting reactant

  • Rate constant k = 4.5 L/(mol min)

  • -rB = rD = k*CA*CB

  • -rB = k*CA0(1-CB0*X)*CB0(1-X)      

Other detailed steps is as shown in the attached file

You might be interested in
A motorcycle accelerates uniformly from rest at 7.9\,\dfrac{\text{m}}{\text{s}^2}7.9 s 2 m ​ 7, point, 9, space, start fraction,
8090 [49]

Answer:

t = 3.516 s

Explanation:

The most useful kinematic formula would be the velocity of the motorcylce as a function of time, which is:

v(t) = v_0 +at

Where v_0 is the initial velocity and a is the acceleration. However the problem states that the motorcyle start at rest therefore v_0 = 0

If we want to know the time it takes to achieve that speed, we first need to convert units from km/h to m/s.

This can be done knowing that

1 km = 1000 m

1 h = 3600 s

Therefore

1 km/h = (1000/3600) m/s = 0.2777... m/s

100 km/h = 27.777... m/s

Now we are looking for the time t, for which v(t) = 27.77 m/s. That is:

27.777 m/s = 7.9 m/s^2 t

Solving for t

t = (27.7777 / 7.9) s = 3.516 s

6 0
3 years ago
if you drop a stone from height of 2.5m. what is the speed of the stone right before it hits the ground?
KonstantinChe [14]
Since the stone was dropped from height, its initial velocity = 0 m/s

Using  v² = u² + 2gs.

Where g ≈ 10 m/s²,  u = initial velocity = 0 m/s, s = height from drop = 2.5 m

v² = u² + 2gs

v² = 0² + 2*10*2.5

v² = 0 + 50

v² = 50

v = √50

v ≈ 7.07 m/s

Hence velocity just before hitting the ground is ≈ 7.07 m/s 
6 0
3 years ago
I'd like you to think back on 2 events in
strojnjashka [21]

Answer:

Holi

biwali

these are best events and love to celebrate withmy family and friends it contains lot of happiness and joy

7 0
3 years ago
10. Heat is the transfer of thermal energy from one object to another because of a difference in
stiv31 [10]

Answer:

Temperature

Explanation:

Heat only flows from one point to the other due to the difference in temperature.

7 0
3 years ago
10. How far does a transverse pulse travel in 1.23 ms on a string with a density of 5.47 × 10−3 kg/m under tension of 47.8 ?????
KATRIN_1 [288]

Answer: Tension = 47.8N, Δx = 11.5×10^{-6} m.

              Tension = 95.6N, Δx = 15.4×10^{-5} m

Explanation: A speed of wave on a string under a tension force can be calculated as:

|v| = \sqrt{\frac{F_{T}}{\mu} }

F_{T} is tension force (N)

μ is linear density (kg/m)

Determining velocity:

|v| = \sqrt{\frac{47.8}{5.47.10^{-3}} }

|v| = \sqrt{0.00874 }

|v| = 0.0935 m/s

The displacement a pulse traveled in 1.23ms:

\Delta x = |v|.t

\Delta x = 9.35.10^{-2}*1.23.10^{-3}

Δx = 11.5×10^{-6}

With tension of 47.8N, a pulse will travel Δx = 11.5×10^{-6}  m.

Doubling Tension:

|v| = \sqrt{\frac{2*47.8}{5.47.10^{-3}} }

|v| = \sqrt{2.0.00874 }

|v| = \sqrt{0.01568}

|v| = 0.1252 m/s

Displacement for same time:

\Delta x = |v|.t

\Delta x = 12.52.10^{-2}*1.23.10^{-3}

\Delta x = 15.4×10^{-5}

With doubled tension, it travels \Delta x = 15.4×10^{-5} m

4 0
3 years ago
Other questions:
  • Find the change in kinetic energy of a 0.650 kg fish leaping to the right at 15.0 m/s that collides inelastically with a 0.950 k
    8·2 answers
  • 1. What was the electromagnetic spectrum ?
    5·1 answer
  • Which statement best describes the circular flow model?
    13·1 answer
  • Two charges repel one another at 5N, if the distance between them is 2m and the force increases to 25N, what is the new distance
    12·1 answer
  • A person is standing on an elevator initially at rest at the first floor of a high building. The elevator then begins to ascend
    6·1 answer
  • If $1,800 is invested in a savings account offering interest at a rate of 4.5% per year, compounded continuously, how fast is th
    14·1 answer
  • Fred (mass 60 kg) is running with the football at a speed of 6.0 m/s when he is met head-on by Brutus (mass 120 kg), who is movi
    14·1 answer
  • On Planet Y, which has no air, a dropped object falls 9 m in 3 seconds. What is g, the acceleration due to gravity, on that plan
    8·1 answer
  • How far can a bus carrying small children, travel at a rate of 60 km per hour travel in 2 1/2 hours?
    5·1 answer
  • You and your little sister go to the park in cheetah started to go down the plastic slide. On her way down to euros out ouch! Wh
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!