The maximum diffraction order seen is 3.
<h3>What is the maximum diffraction order seen?</h3>
We know that the maximum angle of diffraction Q_m of the furthest bright fringe < Q = 90 degrees.
Here we need to compute the nth bright fringe for which is approximated to 90 degrees.
The angle of nth bright fringe is given by;
sin(Q_m) = n(λ)N
Approximating Q_m ≈ 90 degrees.
sin (90) = nλN
n = sin (90) / (λN)
n = 1 / ((580 x 10⁻⁶)500)
n = 3.5 orders
Since, we knew that Q_m < 90 degrees, we will choose n = 3 as the maximum number of orders.
Thus, the maximum diffraction order seen is 3.
Learn more about maximum diffraction here: brainly.com/question/14703089
#SPJ4
Answer:
its your homework
Explanation:
you aren't getting any free answers out of me because it sounds like your trying to be smart your welcome
(Not smarter than me)
We have:
Total Energy: KE + GPE
KE (Kinetic Energy) =

GPE (Gravitational Potential Energy) =

Data:
m (mass) = 2.0 Kg
v (speed) = 10 m/s
h (height) = 50 m
Use: g (gravity) = 10 m/s²
Formula:
Total Energy: KE + GPE

Solving:





Answer:
minimum length of a surface crack is 18.3 mm
Explanation:
Given data
plane strain fracture toughness K = 82.4 MPa m1/2
stress σ = 345 MPa
Y = 1
to find out
the minimum length of a surface crack
solution
we will calculate length by this formula
length = 1/π ( K / σ Y)²
put all value
length = 1/π ( K / σ Y)²
length = 1/π ( 82.4
/ 345× 1)²
length = 18.3 mm
minimum length of a surface crack is 18.3 mm
Answer:
We are given x= bt +ct²
So
A. bxt= m
Because m/s*s= m
So b= m/s and c= m/s²
B.
x= bt-ct²
So at x=0 t=0
x=0 t= 2
We have
bt = ct² so t = b/c at x= 0
So b-2ct= 0
B. To find velocity we use
dx / dt = b - 2 Ct
C. At rest wen V= 0
We have t= b/2c
D. To find acceleration we use
dv / dt = - 2C