K.E = 1/2 mv²
800 = 1/2 ×12 ×v²
800 = 6 v²
800 / 6 = v²
= 133.4 =v²
√133.4 = √v²
11.5 = v²
I hope this answer is correct.
Given:
Dy= 20 m
Vi = 5.0 m/s horizontally
A=9.81 m/s^2
Find:
Horizontal displacement
Solution:
D=ViT+(1/2)AT^2
Dy=(1/2)AT^2
T^2=Dy/(1/2)A
T=sqrt(Dy/(1/2)A)
T=sqrt(20/4.905)
T=2.0s
Dx=ViT
Dx=(5.0)(2.0)
Dx=10. meters
The formula for work is
F*d
Therefore work=2.0N*3.0=6N*m
Answer:
Lever => 
Pulley => G = M x n (gravitational acceleration)
Wheel and axle => M.A = Radius of the wheel/radius of the axle = R/r
Inclined plane => It can be divided into two components: Fi = Fg * sinθ - parallel to inclined plane. Fn = Fg * cosθ - perpendicular one.
<span>10 times as much. Since F=m*a, and a is constant, the only thing that affects force is the mass.
In response to the below answer, the acceleration due to gravity does not change. The force due to gravity definitely DOES change depending on the mass of the object. Since the force is what the problem asks for, the answer is 10</span>