Answer:
a) 
b) 0.2046 = 20.46% probability the driving distance for one of these golfers is less than 290 yards
Step-by-step explanation:
Uniform probability distribution:
An uniform distribution has two bounds, a and b.
The probability of finding a value of at lower than x is:

The probability of finding a value between c and d is:

The probability of finding a value above x is:

The probability density function of the uniform distribution is:

The driving distance for the top 100 golfers on the PGA tour is between 284.7 and 310.6 yards.
This means that
.
a. Give a mathematical expression for the probability density function of driving distance.

b. What is the probability the driving distance for one of these golfers is less than 290 yards?

0.2046 = 20.46% probability the driving distance for one of these golfers is less than 290 yards
First take note he only has $20 and the bag he must buy is $12.55. Also the loose seeds are $1.49 per pound.
To solve subtract 12.55 from 20
20-12.55=7.45
So after buying the 10 lb bag he has $7.45 left now divide that by 1.49
7.45/1.49=5
So after buying the 10 lb bag he can also buy 5 lb of the loose seeds!
Answer:
640 m
Step-by-step explanation:
We can consider 4 seconds to be 1 time unit. Then 8 more seconds is 2 more time units, for a total of 3 time units.
The distance is proportional to the square of the number of time units. After 1 time unit, the distance is 1² × 80 m. Then after 3 time units, the distance will be 3² × 80 m = 720 m.
In the additional 2 time units (8 seconds), the ball dropped an additional
... (720 -80) m = 640 m
_____
<em>Alternate solution</em>
You can write the equation for the proportionality and find the constant that goes into it. If we use seconds (not 4-second intervals) as the time unit, then we can say ...
... d = kt²
Filling in the information related to the first 4 seconds, we have ...
... 80 = k(4)²
... 80/16 = k = 5
Then the distance equation becomes ...
... d = 5t²
After 12 seconds (the first 4 plus the next 8), the distance will be ...
... d = 5×12² = 5×144 = 720 . . . meters
That is, the ball dropped an additional 720 -80 = 640 meters in the 12 -4 = 8 seconds after the first data point.
Answer:
Approximately 66.4 Meters
Step-by-step explanation:
So we have a rectangle with a width of 18.8 meters and a diagonal with 23.7 meters. To find the perimeter, we need to find the length first. Since a rectangle has four right angles, we can use the Pythagorean Theorem, where the diagonal is the hypotenuse.

Plug in 18.8 for either <em>a </em>or <em>b. </em>Plug in the diagonal 23.7 for <em>c. </em>
<em />
Therefore, the length is 14.4 meters. Now, find the perimeter:

M=c/at
Divide both sides by a and t to isolate m. Then the solution is just m=c/at