Answer:
1. Inversely proportional
2. Option C. Boyle's Law
3. Directly proportional
4. Option C. Gay-Lussac's Law
5. Directly proportional
6. Option C. Charles' Law
Explanation
Boyle's law states that the volume of a fixed mass of gas is inversely proportional to the pressure provided temperature remains constant. Mathematically,
V & 1/P
V = K/P
PV = K(constant)
Charles' law states that the volume of a fixed mass of gas is directly proportional to it's absolute temperature, provided pressure remains constant. Mathematically,
V & T
V = KT
V / T = K(constant)
Gay-Lussac's Law states that the pressure of a fixed mass of gas is directly proportional to it's absolute temperature, provided the volume remains constant. Mathematically
P & T
P = KT
P/ T = K (constant)
Answer:
1027.9 mL
Explanation:
Formula P1 x V1 / T1 = P2 x V2 / T2
Fill in what you know
Pressure is constant so no need to put that in making the formula
V1 / T1 = V2 / T2
Voulme 1= 950 mL
Volume 2= ?
Temperature 1 = 25 C
Temperature 2 = 50 C
Explanation:
Formula P1 x V1 / T1 = P2 x V2 / T2
Fill in what you know
Pressure is constant so no need to put that in making the formula
V1 / T1 = V2 / T2
Voulme 1= 950 mL
Volume 2= ?
Temperature 1 = 25 C
Temperature 2 = 50 C
Balance the reaction of Fe2(SO4)3 + KOH = K2SO4 + Fe(OH)3 using this chemical equation balancer! ... Fe2(SO4)3 + 6KOH → 3K2SO4 + 2Fe(OH)3 ...
Missing: _K[ | Must include: _K[
Answer:
After 2.0 minutes the concentration of N2O is 0.3325 M
Explanation:
Step 1: Data given
rate = k[N2O]
initial concentration of N2O of 0.50 M
k = 3.4 * 10^-3/s
Step 2: The balanced equation
2N2O(g) → 2 N2(g) + O2(g)
Step 3: Calculate the concentration of N2O after 2.0 minutes
We use the rate law to derive a time dependent equation.
-d[N2O]/dt = k[N2O]
ln[N2O] = -kt + ln[N2O]i
⇒ with k = 3.4 *10^-3 /s
⇒ with t = 2.0 minutes = 120s
⇒ with [N2O]i = initial conc of N2O = 0.50 M
ln[N2O] = -(3.4*10^-3/s)*(120s) + ln(0.5)
ln[N2O] = -1.101
e^(ln[N2O]) = e^(-1.1011)
[N2O} = 0.3325 M
After 2.0 minutes the concentration of N2O is 0.3325 M