Hello!
We use the amount in grams (mass ratio) based on the composition of the elements, see: (in 100 g solution)
C: 83.7% = 83,7 g
H: 16.3% = 16.3 g
Let us use the above mentioned data (in g) and values will be converted to amount of substance (number of moles) by dividing by molecular mass (g / mol) each of the values, lets see:


We note that the values found above are not integers, so let's divide these values by the smallest of them, so that the proportion is not changed, let's see:


Note: So the ratio in the smallest whole numbers of carbon to hydrogen is 3:7, t<span>hus, the minimum or empirical formula found for the compound will be:
</span>
I hope this helps. =)
If u disturbed equilibrium position then this principal comes into effect deciding how to counteract the disturbance.
It should be <em>Ultraviolet rays </em>because they are moderate in energy.
Answer:
There was an improvement in accuracy. There was no change in precision.
Explanation:
<em>The average mass after recalibration is closer to the mass of the standard, </em>so the recalibration improved the accuracy<em> </em>(the measurement is closer to an accepted 'true' value).
The standard deviation did not change, so the precision (or how disperse the measurements are) was not affected.