Answer:
1. Percentage by weight = 0.5023 = 50.23 %
2. molar fraction =0.153
Explanation:
We know that
Molar mass of HClO4 = 100.46 g/mol
So the mass of 5 Moles= 5 x 100.46
Mass (m)= 5 x 100.46 = 502.3 g
Lets assume that aqueous solution of HClO4 and the density of solution is equal to density of water.
Given that concentration HClO4 is 5 M it means that it have 5 moles of HClO4 in 1000 ml.
We know that
Mass = density x volume
Mass of 1000 ml solution = 1 x 1000 =1000 ( density = 1 gm/ml)
m'=1000 g
1.
Percentage by weight = 502.3 /1000
Percentage by weight = 0.5023 = 50.23 %
2.
We know that
molar mass of water = 18 g/mol
mass of water in 1000 ml = 1000 - 502.3 g=497.9 g
So moles of water = 497.7 /18 mole
moles of water = 27.65 moles
So molar fraction = 5/(5+27.65)
molar fraction =0.153
Hey there!:
Molar mass Lead ( Pb ) = 207.2 g/mol
Therefore:
1 mole Pb --------------------- 6.02*10²³ atoms
? moles Pb -------------------- 2.31*10²¹ atoms
moles Pb = ( 2.31*10²¹ ) * 1 / ( 6.02*10²³ ) =
moles Pb = ( 2.31*10²¹ ) / ( 6.02*10²³ ) =
=> 0.00383 moles of Pb
Hope this helps !
A proton is the same as an H+ ion, and Arrhenius acids are the ones that release H+ in solution, so the answer is A
The simple trick which one can consider in such problem where it is asked for positron emission is :
<span>When the atomic number goes DOWN by one and mass number remains unchanged, then a positron is emitted.
</span>
<span>a. </span>

<span>
Here the atomic number decreases by one.
Similarly, options b and d are eliminated.
Option c is also not the answer.
For c, Count the atomic number on left side and compare it with right side. You will see it is 9 on left and 8 on right. Atomic no. did go down by 1. But the atomic mass is changed as well.
</span>
Mass wasting I think it's done